# HIVDB Genotypic Drug Resistance Interpretation Program

Bob Shafer, MD

Division of Infectious Diseases / Department of Medicine

Stanford University

# Disclosures

- Within the past three years:
  - Research funding from Janssen Pharmaceuticals, Vela Diagnostics
  - Consulting from Abbott Diagnostics

- Database Funding:
  - NIH / NIAID
  - Several grants since 2000
  - Most recently: R24AI136618

- Principles of resistance interpretation
  - Approaches to developing an expert system
- HIVDB drug resistance "knowledgebase"
- HIVDB drug resistance interpretation program

# Expert Systems: Rule-Based vs. Machine Learning

- Rule-Based
  - Can use data from a wide variety of sources. Even if the raw data are not available
  - Can integrate expert opinion
  - Transparent / Educational
  - Subjective
- Machine learning
  - Requires massive amount of raw data
  - Lacks explanatory component
  - Can be optimized to a given dataset

# Rules-Based Expert Systems

- Logical rules
  - Example: "At least 4 mutations among: M41L, E44D, D67N, T69D/N/S, L74V/I, L210W, T215A/C/D/E/G/H/I/L/N/S/V/Y/F" => TDF resistance (ANRS)
- Scores
  - Scores for individual mutations and for combinations of mutations
  - Adding up the scores leads to a level of drug resistance

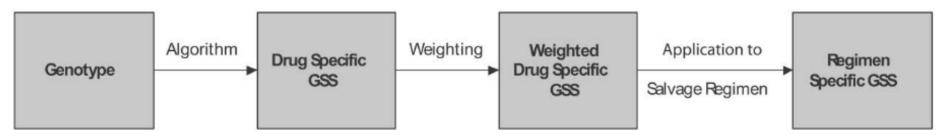
# Goals of Expert Systems

- Yields an optimal result
  - May not be correct
  - But is guaranteed to be optimal according to some criteria
- Mimics an expert
  - May not be correct
  - Expert often gives background information

# Additional Limitations


- Doesn't contain sufficient information to choose a regimen without knowledge of:
  - Principles of HIV therapy
  - Treatment guidelines
  - Other information about a patient
- Currently doesn't recommend regimens

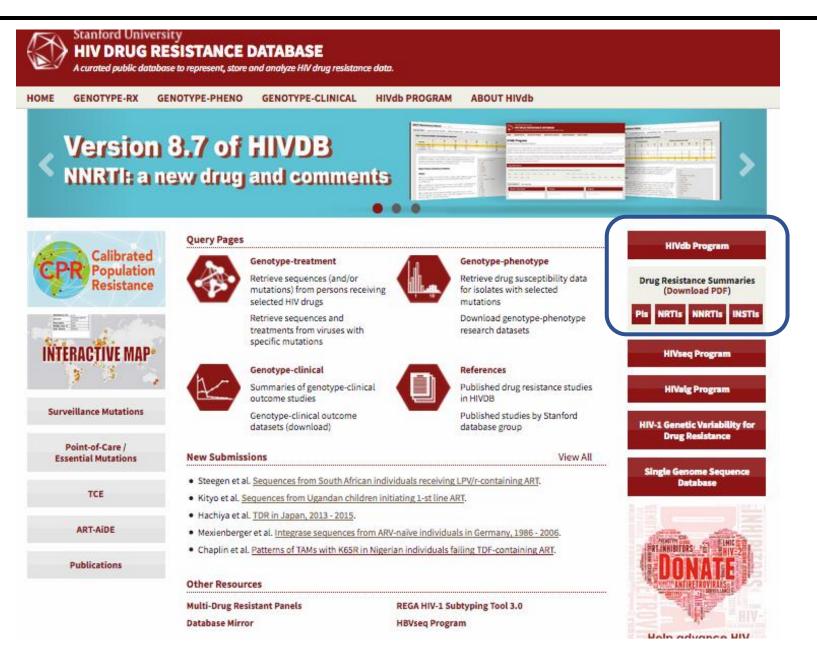
# HIVDB Program: Levels of HIVDR


| Resistance Level               | Definition                                                                                                                                                                                       | Score range |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Susceptible                    | No evidence of reduced susceptibility                                                                                                                                                            | <10         |
| Potential low level resistance | DRMs consistent with previous ARV exposure or DRMs associated with resistance only when they occur with other DRMs                                                                               | 10-14       |
| Low-level resistance           | DRMs associated with a reduction in vitro ARV susceptibility or a suboptimal virological response to ARV treatment.                                                                              | 15-29       |
| Intermediate resistance        | A high likelihood that ARV activity would be reduced. However, the ARV would likely still retain antiviral activity.                                                                             | 30-59       |
| High-level resistance          | A level of resistance similar to that observed in viruses with the highest levels of reduced in vitro susceptibility or in viruses that have little or no virological response to ARV treatment. | ≥60         |

- Selected by drugs in vitro ("passage experiments")
- Selected by drugs in vivo (persons developing virological failure)
  - Prevalence of mutations in ARV-naïve and ARV-experienced persons
- Reduce in vitro susceptibility ("phenotypic testing")
  - Site-directed mutants
  - Clinical isolates
- Reduce response to a salvage therapy regimen
  - Clinical trials
  - Retrospective cohort studies

#### Virological Response Data




#### **Analysis of TCE data**



- Balancing the previous lines of evidence.
- Accounting for the fact that some ARVs are more potent than others or have performed better in clinical trials.
- Individual and combination scores are titrated so they produce the "correct" level of resistance: Susceptible, Potential low level, Low level, Intermediate, High level

- Principles of resistance interpretation and expert systems
- HIVDB drug resistance "knowledgebase"
  - Scores, comments, and notes pages
- HIVDB drug resistance interpretation program

### **HIVDB** Home Page



# HIVDB Program and Supporting Material



#### **Query Pages**



#### Genotype-treatment

Retrieve sequences (and/or mutations) from persons receiving selected HIV drugs

Retrieve sequences and treatments from viruses with



#### Genotype-phenotype

Retrieve drug susceptibility data for isolates with selected mutations

Download genotype-phenotype research datasets



# Notes (INSTIs)

#### HIV POL DRUG RESISTANCE SUMMARY

| DR Notes          |  |
|-------------------|--|
| DR Comments       |  |
| Mutation Scores   |  |
| Pattern Scores    |  |
| Mut Scores Editor |  |
|                   |  |

#### INSTI Resistance Notes (PI+NRTI+NNRTI+INSTI)

#### Major Integrase Inhibitor (INSTI) Resistance Mutations

|                    | 66  | 92 | 118 | 138 | 140 | 143 | 147 | 148 | 155 | 263 |
|--------------------|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|
| Consensus          | т   | E  | G   | E   | G   | Y   | S   | Q   | N   | R   |
| Bictegravir (BIC)  | K   | Q  | R   | KAT | SAC |     |     | HRK | н   | ĸ   |
| Dolutegravir (DTG) | K   | Q  | R   | KAT | SAC |     |     | HRK | н   | К   |
| Elvitegravir (EVG) | AIK | Q  | R   | KAT | SAC |     | G   | HRK | н   | ĸ   |
| Raltegravir (RAL)  | AIK | Q  | R   | KAT | SAC | RCH |     | HRK | н   | K   |

The table lists the most common clinically significant INSTI-resistance mutations. Mutations in bold red are associated with the highest levels of reduced susceptibility or virological response to the indicated INSTI. Mutations in bold reduce INSTI susceptibility or virological response. Mutations in plain text contribute to reduced suceptibility in combination with other INSTI-resistance mutations.

#### H51Y

H51Y is a rare nonpolymorphic accessory mutation. It is selected in vitro by EVG (1,2,3) and DTG (4) and in patients receiving RAL (5,6) and EVG (7,8). It reduces EVG susceptibility by ~2-3-fold (1,3,4,9,10) but alone does not appear to reduce RAL, DTG, or BIC susceptibility (3,4,11,12).

#### T66A/I/K

T66A is a nonpolymorphic mutation selected in patients receiving EVG (5,13,8,14) and RAL (15,16,5). It reduces EVG susceptibility ~5-fold but has minimal effect on RAL, DTG or BIC susceptibility (17,3,18,19,20,10).

T66I is a nonpolymorphic mutation frequently selected in vitro (2,1,21,3,22) and in patients receiving

H51Y
T66A/I/K
L74M/I/F
E92Q/G/V
T97A
G118R
F121Y
E138K/A/T
G1405/A/C
P142T
Y143C/R/H/K/S/G/A
P145S
Q146P
S147G
Q148H/K/R/N

G149A

HIVdb version 8.7 (last updated on 2018-10-19)

Notes last updated on 2018-07-16

# Notes (NRTI Table)

#### Major Nucleoside RT Inhibitor (NRTI) Resistance Mutations

|           | Discriminatory Mutations |     |    |    |     |    |    | Thymidine Analog Mutations (TAMs) |     |     |     |     |     |  |
|-----------|--------------------------|-----|----|----|-----|----|----|-----------------------------------|-----|-----|-----|-----|-----|--|
|           | 184                      | 65  | 70 | 74 | 115 | 41 | 67 | 70                                | 210 | 215 | 219 | 69  | 151 |  |
| Consensus | м                        | к   | к  | L  | Y   | м  | D  | к                                 | L   | т   | к   | т   | Q   |  |
| 3TC       | VI                       | R   |    |    |     |    |    |                                   |     |     |     | Ins | м   |  |
| FTC       | VI                       | R   |    |    |     |    |    |                                   |     |     |     | Ins | м   |  |
| ABC       | VI                       | R   | Е  | VI | F   | L  |    |                                   | W   | FY  |     | Ins | м   |  |
| DDI       | VI                       | R   | Е  | VI |     | L  |    |                                   | W   | FY  |     | Ins | м   |  |
| TDF       | ***                      | R   | Е  |    | F   | L  |    | R                                 | W   | FY  |     | Ins | м   |  |
| D4T       | ***                      | R   | Е  |    |     | L  | N  | R                                 | W   | FY  | QE  | Ins | м   |  |
| ZDV       | ***                      | *** | *  | *  |     | L  | N  | R                                 | W   | FY  | QE  | Ins | м   |  |

|      | Ма        | jor      |      |           |     |    |    |    | bite<br>ion |     | NRT | I)  |     |             | •    |     |            |           |             |             | T Inh<br>utatio | ibitor<br>ons |     |
|------|-----------|----------|------|-----------|-----|----|----|----|-------------|-----|-----|-----|-----|-------------|------|-----|------------|-----------|-------------|-------------|-----------------|---------------|-----|
|      |           | Nor      | 1-TA | Ms        |     |    |    | T  | AMs         |     |     | м   | DR  |             |      |     |            |           |             |             |                 |               |     |
|      | 184       | 65       | 70   | 74        | 115 | 41 | 67 | 70 | 210         | 215 | 219 | 69  | 151 |             |      | 100 | 101        | 103       | 106         | 181         | 188             | 190           | 230 |
| Cons | м         | к        | K    | L         | Y   | м  | D  | K  | L           | т   | к   | т   | Q   | -<br>-<br>- | Cons | L   | к          | к         | v           | Y           | Y               | G             | м   |
| 3TC  | VI        | R        |      |           |     |    |    |    |             |     |     | Ins | м   |             | DOR  | T   | EP         |           | <u>A</u> MI | CIV         | <b>L</b> CH     | S <u>E</u>    | Ŀ   |
| FTC  | <u>vi</u> | R        |      |           |     |    |    |    |             |     |     | Ins | м   | •           | EFV  | I   | E <u>P</u> | <u>NS</u> | <u>А</u> М  | CIV         | <u>LC</u> H     | A <u>SEQ</u>  | L   |
| ABC  | VI        | <u>R</u> | Е    | <u>VI</u> | E   | L  |    |    | W           | FY  |     | Ins | M   |             | ETR  | 1   | Е <u>Р</u> |           |             | C <u>IV</u> | L               | AS <b>EQ</b>  | L   |
| TDF  | ***       | <u>R</u> | Е    |           | F   | L  |    | R  | w           | FY  |     | Ins | M   |             | RPV  | 1   | EP         |           |             | C <u>IV</u> | Ŀ               | AS <b>EQ</b>  | L   |
| ZDV  | ***       | ***      | *    | *         |     | L  | N  | R  | w           | FY  | QE  | Ins | M   | 8<br>8<br>8 | NVP  | Т   | <u>EP</u>  | <u>NS</u> | <u>AM</u>   | <u>CIV</u>  | <u>LCH</u>      | ASEQ          | L   |

## Handout with Tables: INSTIs and PIs

|      | Ma          | _  |     |     | se Ir<br>nce N |           |     | (INS<br>15 | TI) |     |
|------|-------------|----|-----|-----|----------------|-----------|-----|------------|-----|-----|
|      | 66          | 92 | 118 | 138 | 140            | 143       | 147 | 148        | 155 | 263 |
| Cons | т           | E  | G   | E   | G              | Y         | S   | Q          | N   | R   |
| BIC  | К           | Q  | R   | KAT | SAC            |           |     | HRK        | н   | к   |
| DTG  | к           | Q  | R   | KAT | SAC            |           |     | HRK        | н   | к   |
| EVG  | AIK         | Q  | R   | КАТ | SAC            |           | G   | HRK        | H   | к   |
|      |             | -  |     |     |                |           | -   |            | -   |     |
| RAL  | AI <u>k</u> | Q  | R   | KAT | <u>SAC</u>     | <u>RC</u> |     | <u>HRK</u> | H   | к   |

## Comments and Mutation Classification (INSTIs)

#### HIV POL DRUG RESISTANCE SUMMAR

DR Notes DR Comments Mutation Scores Pattern Scores Mut Scores Editor

#### INSTI Resistance Comments (PI+NRTI+NNRTI+INSTI)

HIVdb version 8.7 (last updated on 2018-10-19)

| Condition | Comment/<br>Mutation Type | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 501       | Other                     | M50I is a polymorphic mutation selected in vitro by DTG and BIC in combination with R263K. It appears<br>to contribute to reduced DTG susceptibility in combination with R263K.                                                                                                                                                                                                                                                                                                                                                                                             |
| l¥        | Accessory                 | H51Y is a rare non-polymorphic accessory mutation selected in patients receiving RAL and EVG and in vitro by DTG. H51Y minimally reduces EVG susceptibility (~2 to 3-fold). It does not reduce RAL or DTG susceptibility.                                                                                                                                                                                                                                                                                                                                                   |
| 66A       | Major                     | T66A is a non-polymorphic mutation selected in patients receiving EVG and RAL, usually in combination<br>with other INSTI-resistance mutations. It causes a moderate reduction in EVG susceptibility but does<br>not appear to reduce RAL, DTG, or BIC susceptibility.                                                                                                                                                                                                                                                                                                      |
| 661       | Major                     | T66I is a non-polymorphic mutation selected in patients receiving EVG, RAL, and DTG. It reduces EVG susceptibility about 10-fold but does not reduce RAL, DTG, or BIC susceptibility.                                                                                                                                                                                                                                                                                                                                                                                       |
| 66K       | Major                     | T66K is a non-polymorphic mutation selected in patients receiving EVG. It is associated with high-<br>level EVG resistance, intermediate/high-level RAL resistance, and low-level DTG resistance. Its<br>effect on BIC is not known.                                                                                                                                                                                                                                                                                                                                        |
| 74MIF     | Other                     | L74M/I are polymorphic accessory mutations commonly selected by each of the INSTIS. In ARV-naive<br>patients, L74M occurs in 0.5% to 10% of patients and L74I occurs in 3% to 20% of patients depending<br>on subtype. Alone, L74M/I have minimal, if any, effect on INSTI susceptibility. However, they<br>contribute reduced susceptibility to each of the INSTIS when they occur with major INSTI-resistance<br>mutations. L74F is a rare nonpolymorphic mutation which also contributes reduced susceptibility when<br>it occurs with other INSTI-resistance mutations. |

## Scores (INSTIs Individual Mutations)

#### INSTI Resistance Mutation Scores (PL-NRTI-NNRTI-INSTI)

HIVdb version 8.7 (last updated on 2018-10-19)

| HIV POL DRUG       |        |     |     |     |     |  |  |  |  |  |
|--------------------|--------|-----|-----|-----|-----|--|--|--|--|--|
| RESISTANCE SUMMARY | Rule 🔺 | BIC | DTG | EVG | RAL |  |  |  |  |  |
|                    | H51Y   | 10  | 10  | 15  | 15  |  |  |  |  |  |
| DR Notes           | T66A   | 0   | 0   | 60  | 15  |  |  |  |  |  |
| DR Comments        | T66I   | 5   | 5   | 60  | 15  |  |  |  |  |  |
| Mutation Scores    | T66K   | 15  | 15  | 60  | 60  |  |  |  |  |  |
|                    | E92G   | 0   | 0   | 30  | 15  |  |  |  |  |  |
| Pattern Scores     | E92Q   | 10  | 10  | 60  | 30  |  |  |  |  |  |
| Mut Scores Editor  | E92V   | 0   | 0   | 60  | 30  |  |  |  |  |  |
|                    | Q95K   | 0   | 0   | 10  | 10  |  |  |  |  |  |
|                    | T97A   | 0   | 0   | 10  | 10  |  |  |  |  |  |
|                    | G118R  | 15  | 15  | 30  | 30  |  |  |  |  |  |
|                    | F121Y  | 10  | 10  | 60  | 60  |  |  |  |  |  |
|                    | E138A  | 10  | 10  | 15  | 15  |  |  |  |  |  |
|                    | E138K  | 10  | 10  | 15  | 15  |  |  |  |  |  |
|                    | E138T  | 10  | 10  | 15  | 15  |  |  |  |  |  |
|                    | G140A  | 10  | 10  | 30  | 30  |  |  |  |  |  |
|                    | G140C  | 10  | 10  | 30  | 30  |  |  |  |  |  |
|                    | G140S  | 10  | 10  | 30  | 30  |  |  |  |  |  |

# Scores (INSTIs, sorted by DTG)

| NSTI Resi | stance Mutat | ion Scores (PI·NF | RTI · NNRTI · <u>INSTI</u> ) | HIVdb version 8.7 (last updated on 2018-10-1 |
|-----------|--------------|-------------------|------------------------------|----------------------------------------------|
| Rule      | BIC          | DTG 🔻             | EVG                          | RAL                                          |
| Q148K     | 30           | 30                | 60                           | 60                                           |
| Q148H     | 25           | 25                | 60                           | 60                                           |
| Q148R     | 25           | 25                | 60                           | 60                                           |
| R263K     | 25           | 25                | 30                           | 25                                           |
| S230R     | 10           | 20                | 20                           | 20                                           |
| T66K      | 15           | 15                | 60                           | 60                                           |
| G118R     | 15           | 15                | 30                           | 30                                           |
| V151L     | 15           | 15                | 60                           | 30                                           |
| S153F     | 15           | 15                | 15                           | 0                                            |
| S153Y     | 15           | 15                | 15                           | 0                                            |
| H51Y      | 10           | 10                | 15                           | 15                                           |
| E92Q      | 10           | 10                | 60                           | 30                                           |
| F121Y     | 10           | 10                | 60                           | 60                                           |
| E138A     | 10           | 10                | 15                           | 15                                           |
| E138K     | 10           | 10                | 15                           | 15                                           |
| E138T     | 10           | 10                | 15                           | 15                                           |
| G140A     | 10           | 10                | 30                           | 30                                           |
| G140C     | 10           | 10                | 30                           | 30                                           |
| G140S     | 10           | 10                | 30                           | 30                                           |
| N155H     | 10           | 10                | 60                           | 60                                           |

# Scores (Mutation Combinations, INSTIs)

| Combination Rule 🔺 | BIC | DTG | EVG | RAL |
|--------------------|-----|-----|-----|-----|
| E138AKT + G140ACS  | 10  | 10  | 15  | 15  |
| E138AKT + Q148HKR  | 10  | 10  | 0   | 0   |
| G140ACS + Q148HKR  | 10  | 10  | 0   | 0   |
| Y143ACGHRS + G163R | 5   | 5   | 5   | 0   |
| Y143ACGHRS + S230R | 5   | 5   | 5   | 0   |
| Q148HKR + N155H    | 10  | 10  | 0   | 0   |
| Q148HKR + G163KR   | 5   | 5   | 0   | 0   |
| E157Q + R263K      | 10  | 10  | 0   | 0   |
| H51Y + R263K       | 10  | 10  | 15  | 0   |
| L74FM + Y143ACGHRS | 5   | 5   | 5   | 0   |
| L74FM + Q148HKR    | 10  | 10  | 10  | 10  |
| E92Q + N155H       | 5   | 5   | 0   | 0   |
| T97A + Y143ACGHRS  | 0   | 0   | 5   | 0   |
| T97A + Q148HKR     | 15  | 15  | 0   | 0   |

## Published NRTI Mutation Patterns

#### NRTI Mutation Pattern Scores (PI · NRTI · NNRTI · INSTI)

HIVdb version 8.7 (last updated on 2018-10-1

| Pattern                      | count 🔻 | ABC | AZT | D4T | DDI | FTC | ЗТС | TDF |
|------------------------------|---------|-----|-----|-----|-----|-----|-----|-----|
| M184V                        | 6733    | 15  | -10 | -10 | 10  | 60  | 60  | -10 |
| M41L + M184V + T215Y         | 754     | 45  | 55  | 55  | 45  | 65  | 65  | 15  |
| D67N + K70R + M184V + K219Q  | 623     | 60  | 55  | 40  | 40  | 70  | 70  | 15  |
| A62V                         | 591     | 5   | 5   | 5   | 5   | 5   | 5   | 5   |
| M41L + M184V + L210W + T215Y | 523     | 75  | 90  | 90  | 75  | 75  | 75  | 45  |
| K70R + M184V                 | 444     | 20  | 20  | 5   | 20  | 60  | 60  | -5  |
| M41L + T215Y                 | 416     | 30  | 65  | 65  | 35  | 5   | 5   | 25  |
| M184V + T215Y                | 403     | 25  | 30  | 30  | 25  | 60  | 60  | 0   |
| M41L + L210W + T215Y         | 371     | 60  | 100 | 100 | 65  | 15  | 15  | 55  |
| K65R + M184V                 | 338     | 60  | -25 | 50  | 70  | 90  | 90  | 50  |
| K65R                         | 330     | 45  | -15 | 60  | 60  | 30  | 30  | 60  |
| M41L                         | 330     | 5   | 15  | 15  | 10  | 0   | 0   | 5   |
| T215S                        | 321     | 5   | 20  | 20  | 10  | 0   | 0   | 5   |
| K70R                         | 318     | 5   | 30  | 15  | 10  | 0   | 0   | 5   |
| L74V + M184V                 | 316     | 60  | -10 | -10 | 70  | 60  | 60  | -10 |
| A62V + M184V                 | 312     | 20  | -5  | -5  | 15  | 65  | 65  | -5  |
| T215Y                        | 283     | 10  | 40  | 40  | 15  | 0   | 0   | 10  |
|                              |         |     | -   | -   |     |     |     | -   |

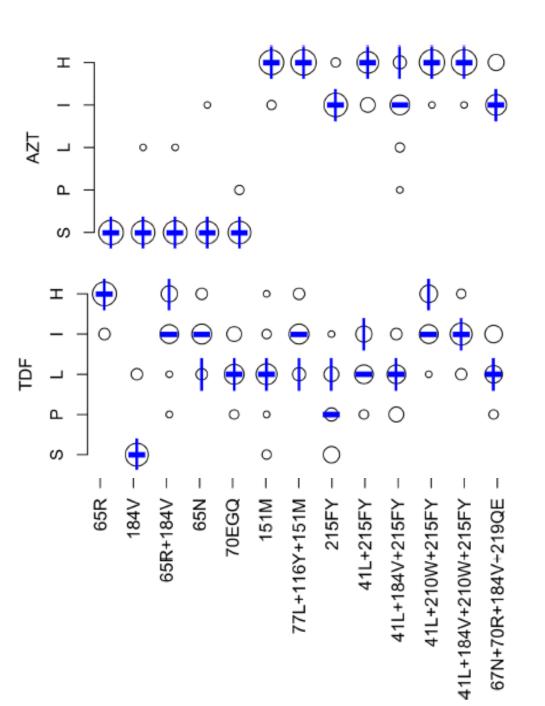
## Published INSTI Mutation Patterns

HIVdb version 8.7 (last updated on 2018-10-19)

#### INSTI Mutation Pattern Scores (PI · NRTI · NNRTI · INSTI) Pattern count **V** BIC DTG EVG RAL E157Q G1405 + Q148H T97A N155H N155H + G163R N155H + E157Q G163R T97A + Y143R E138K E138A + G140S + Q148H T97A + N155H G163K R263K E92Q + N155H Y143R E138K + G140S + Q148H E92Q G1405 + Q148R Q148R

#### INSTI Mutation Pattern Scores (PI · NRTI · NNRTI · INSTI)

HIVdb version 8.7 (last updated on 2018-10-19)


| Pattern                                     | count | BIC | DTG 🔻 | EVG | RAL |
|---------------------------------------------|-------|-----|-------|-----|-----|
| E138K + G140A + Q148K + N155H               | 1     | 100 | 100   | 180 | 180 |
| H51Y + E92Q + G140S + Q148K + N155H + G163R | 1     | 100 | 100   | 240 | 210 |
| E138K + G140A + Q148R + N155H               | 2     | 95  | 95    | 180 | 180 |
| H51Y + E92Q + G140S + Q148K + N155H         | 2     | 95  | 95    | 225 | 195 |
| T97A + E138A + G140S + Q148H                | 1     | 90  | 90    | 130 | 130 |
| E92Q + G140S + Q148K + N155H                | 2     | 85  | 85    | 210 | 180 |
| L74M + E138K + G140C + Q148R + E157Q        | 1     | 85  | 85    | 140 | 140 |
| L74M + E138T + G140S + Q148H                | 1     | 85  | 85    | 130 | 130 |
| T97A + E138K + Q148R + N155H + G163K        | 1     | 85  | 85    | 160 | 160 |
| T97A + G140S + Q148R + N155H + G163R        | 1     | 85  | 85    | 175 | 175 |
| E138K + G140A + Q148K                       | 3     | 80  | 80    | 120 | 120 |
| E92Q + G140S + Q148R + N155H                | 2     | 80  | 80    | 210 | 180 |
| E138A + G140S + Y143H + Q148H               | 1     | 80  | 80    | 130 | 180 |
| E138K + G140S + Q148R + G163R               | 1     | 80  | 80    | 135 | 135 |
| E138A + G140S + Q148H                       | 19    | 75  | 75    | 120 | 120 |
| E138K + G140S + Q148H                       | 15    | 75  | 75    | 120 | 120 |
| E138T + G140S + Q148H                       | 6     | 75  | 75    | 120 | 120 |
| E138A + G140A + Q148R                       | 4     | 75  | 75    | 120 | 120 |

RESEARCH ARTICLE

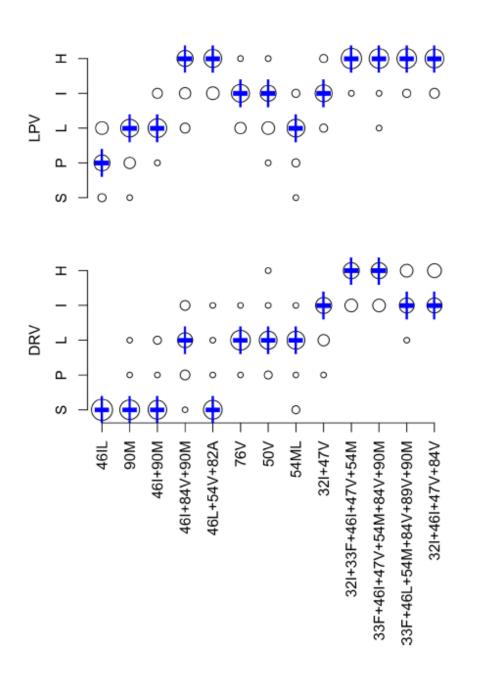
#### Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation

Roger Paredes<sup>1</sup>, Philip L. Tzou<sup>2</sup>, Gert van Zyl<sup>3</sup>, Geoff Barrow<sup>4</sup>, Ricardo Camacho<sup>5</sup>, Sergio Carmona<sup>6</sup>, Philip M. Grant<sup>2</sup>, Ravindra K. Gupta<sup>7</sup>, Raph L. Hamers<sup>8</sup>, P. Richard Harrigan<sup>9</sup>, Michael R. Jordan<sup>10</sup>, Rami Kantor<sup>11</sup>, David A. Katzenstein<sup>2</sup>, Daniel R. Kuritzkes<sup>12</sup>, Frank Maldarelli<sup>13</sup>, Dan Otelea<sup>14</sup>, Carole L. Wallis<sup>15</sup>, Jonathan M. Schapiro<sup>16</sup>, Robert W. Shafer<sup>2</sup>\*

NRTIs



| Overall Pattern*           | Specific Pattern*         | Exact <sup>†</sup> | Included <sup>†</sup> | 3TC <sup>5</sup>  | ABC <sup>§</sup>   | AZT <sup>§</sup>  | TDF <sup>§</sup>  |
|----------------------------|---------------------------|--------------------|-----------------------|-------------------|--------------------|-------------------|-------------------|
| M184V                      | M184V                     | 19.03%             | 63.33%                | >200175           | 3.1 <sub>125</sub> | 0.5124            | 0.563             |
| K65R                       | K65R                      | 0.93%              | 5.64%                 | 8.9 <sub>30</sub> | 2.5 <sub>20</sub>  | 0.520             | 1.8 <sub>17</sub> |
| K65R, M184V                | K65R, M184V               | 0.96%              | 2.88%                 | >20027            | 8.4 <sub>16</sub>  | 0.416             | 1.216             |
| K65N                       | K65N                      | 0.02%              | 0.10%                 | 7.3 <sub>1</sub>  | 2.1 <sub>1</sub>   | -                 | 1.71              |
| K70EGQ                     | K70E                      | 0.07%              | 0.85%                 | 5.3 <sub>5</sub>  | 1.4 <sub>3</sub>   | 0.22              | 0.93              |
|                            | K70G                      | 0.00%              | 0.31%                 | -                 | -                  | -                 | -                 |
|                            | K70Q                      | 0.03%              | 0.27%                 | -                 | -                  | -                 | -                 |
| T215YF                     | T215Y                     | 0.80%              | 28.76%                | 2.4 <sub>19</sub> | 1.612              | 7.4 <sub>15</sub> | 1.41              |
|                            | T215F                     | 0.21%              | 10.29%                | 2.44              | 1.8 <sub>2</sub>   | 5 <sub>2</sub>    | 1.32              |
| M41L, T215YF               | M41L, T215Y               | 1.18%              | 23.87%                | 2 <sub>15</sub>   | 2 <sub>9</sub>     | 12 <sub>12</sub>  | 1.37              |
|                            | M41L, T215F               | 0.23%              | 5.24%                 | 2.6 <sub>1</sub>  | 3.2 <sub>1</sub>   | 50 <sub>1</sub>   | -                 |
| M41L, M184V, T215YF        | M41L, M184V, T215Y        | 2.13%              | 14.34%                | >20055            | 5.1 <sub>41</sub>  | 641               | 1.12              |
|                            | M41L, M184V, T215F        | 0.45%              | 3.39%                 | >2006             | 5.4 <sub>7</sub>   | 3.5 <sub>7</sub>  | 0.51              |
| M41L, L210W, T215YF        | M41L, L210W, T215Y        | 1.05%              | 16.44%                | 2.834             | 3.1 <sub>19</sub>  | 164 <sub>21</sub> | 3.1 <sub>10</sub> |
|                            | M41L, L210W, T215F        | 0.05%              | 1.04%                 | 3.1 <sub>4</sub>  | 3.2 <sub>1</sub>   | 217 <sub>3</sub>  | 4.1 <sub>2</sub>  |
| M41L, M184V, L210W, T215YF | M41L, M184V, L210W, T215Y | 1.48%              | 9.65%                 | >20069            | 6.5 <sub>48</sub>  | 18 <sub>51</sub>  | 1.63              |
|                            | M41L, M184V, L210W, T215F | 0.10%              | 0.66%                 | 1481              | -                  | 69 <sub>1</sub>   | 2.81              |

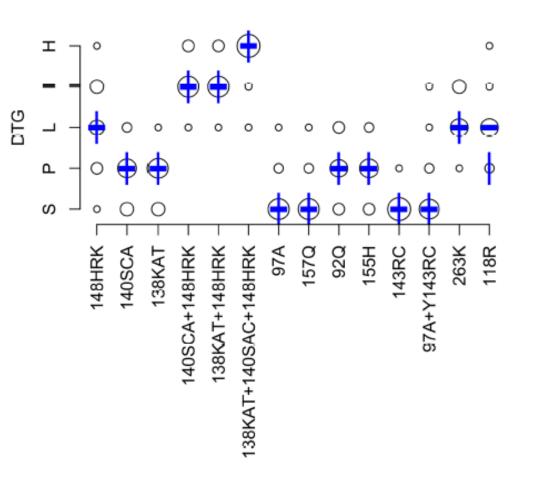

#### Table 5. In vitro susceptibilities associated with the 13 NRTI drug resistance mutation (DRM) patterns.

RESEARCH ARTICLE

#### Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation

Roger Paredes<sup>1</sup>, Philip L. Tzou<sup>2</sup>, Gert van Zyl<sup>3</sup>, Geoff Barrow<sup>4</sup>, Ricardo Camacho<sup>5</sup>, Sergio Carmona<sup>6</sup>, Philip M. Grant<sup>2</sup>, Ravindra K. Gupta<sup>7</sup>, Raph L. Hamers<sup>8</sup>, P. Richard Harrigan<sup>9</sup>, Michael R. Jordan<sup>10</sup>, Rami Kantor<sup>11</sup>, David A. Katzenstein<sup>2</sup>, Daniel R. Kuritzkes<sup>12</sup>, Frank Maldarelli<sup>13</sup>, Dan Otelea<sup>14</sup>, Carole L. Wallis<sup>15</sup>, Jonathan M. Schapiro<sup>16</sup>, Robert W. Shafer<sup>2</sup>\*

Pls




RESEARCH ARTICLE

#### Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation

Roger Paredes<sup>1</sup>, Philip L. Tzou<sup>2</sup>, Gert van Zyl<sup>3</sup>, Geoff Barrow<sup>4</sup>, Ricardo Camacho<sup>5</sup>, Sergio Carmona<sup>6</sup>, Philip M. Grant<sup>2</sup>, Ravindra K. Gupta<sup>7</sup>, Raph L. Hamers<sup>8</sup>, P. Richard Harrigan<sup>9</sup>, Michael R. Jordan<sup>10</sup>, Rami Kantor<sup>11</sup>, David A. Katzenstein<sup>2</sup>, Daniel R. Kuritzkes<sup>12</sup>, Frank Maldarelli<sup>13</sup>, Dan Otelea<sup>14</sup>, Carole L. Wallis<sup>15</sup>, Jonathan M. Schapiro<sup>16</sup>, Robert W. Shafer<sup>2</sup>\*

**INSTIs** 



- Principles of resistance interpretation
- HIVDB drug resistance "knowledgebase"
- HIVDB drug resistance interpretation program

# HIVDB Program Landing Page

| HIVdb Program                                                                                                                                                                                                                                                                                                |                                                                                 | Sierra version 2.2.9 (last updated on 2018-10-19)       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------|
| Genotypic Resistance Interpretation Algorithm                                                                                                                                                                                                                                                                | Release Notes                                                                   | HIVdb version 8.7 (last updated on 2018-10-19)          |
| HIVdb accepts user-submitted protease, RT, and integrase sequence<br>nucleoside, and integrase inhibitors. Its purpose is educational and<br>Drug Resistance Database. A detailed description of the program as<br>programmatically.                                                                         | d as such it provides extensive comments and a highly transparen                | t scoring system that is hyperlinked to data in the HIV |
| Protease, RT, and integrase mutations can be entered using either is<br>consensus wildtype and separating commas are optional. If there is<br>Insertions should be indicated by "Insertion" and deletions by "Del<br>Drug display options<br>By default, results will be shown for checked ARVs. Use checkbo | is a mixture of more than one amino acid at a position, write both<br>eletion". |                                                         |
| NRTI: VABC AZT VFTC V3TC VTDF D4                                                                                                                                                                                                                                                                             | T DDI NNRTI: V DOR V EFV V ETR                                                  | VP VP RPV                                               |
| INSTI: BIC DTG EVG RAL                                                                                                                                                                                                                                                                                       | PI: ATV/r DRV/r LPV/r                                                           |                                                         |
| Input mutations Input sequences                                                                                                                                                                                                                                                                              |                                                                                 |                                                         |
| Reverse Transcriptase                                                                                                                                                                                                                                                                                        | Protease                                                                        | tegrase                                                 |
| Input mutation(s)                                                                                                                                                                                                                                                                                            | Input mutation(s)                                                               | put mutation(s)                                         |

### HIVDB Program Landing Page: Mutation List Options

| Input mutatio   | ns Input s   | equences |     |                |          |    |    |                |          |     |     |
|-----------------|--------------|----------|-----|----------------|----------|----|----|----------------|----------|-----|-----|
| Reverse Tr      | ranscriptase |          |     | Protease       |          |    |    | Integrase      |          |     |     |
| Input muta      | ation(s)     |          |     | Input mut      | ation(s) |    |    | Input mut      | ation(s) |     |     |
| Select mutation | ns:          |          |     | Select mutatio | ns:      |    |    | Select mutatio | ons:     |     |     |
| 40              | 41           | 44       | 62  | 10             | 11       | 13 | 20 | 51             | 66       | 74  | 92  |
| 65              | 67           | 68       | 69  | 23             | 24       | 30 | 32 | 95             | 97       | 114 | 118 |
| 🗸               |              |          |     |                |          |    | 🗸  | 🗾              |          |     |     |
| 70              | 74           | 75       | 77  | 33             | 35       | 36 | 43 | 121            | 128      | 138 | 140 |
| 💌               | 💌            | 🔻        | 💌   | 💌              | 💌        | 🔻  | 💌  | 💌              | 💌        | 💌   |     |
| 90              | 98           | 100      | 101 | 46             | 47       | 48 | 50 | 143            | 145      | 146 | 147 |
| 103             | 106          | 108      | 115 | 53             | 54       | 58 | 63 | 148            | 151      | 153 | 155 |
|                 |              |          |     |                |          |    |    |                |          |     |     |
| 116             | 118          | 138      | 151 | 71             | 73       | 74 | 76 | 157            | 163      | 230 | 263 |
|                 |              | 💌        |     | 🔻              |          | 💌  | 🔻  |                |          | 💌   |     |
| 179             | 181          | 184      | 188 | 77             | 82       | 83 | 84 |                |          |     |     |
| 190             | 210          | 215      | 219 | 85             | 88       | 89 | 90 |                |          |     |     |
|                 |              |          |     |                |          |    |    |                |          |     |     |
| 221             | 225          | 227      | 230 | 93             |          |    |    |                |          |     |     |
|                 | 💌            |          |     | 💌              |          |    |    |                |          |     |     |
| 234             | 236          | 238      | 318 |                |          |    |    |                |          |     |     |
| 348             |              |          |     |                |          |    |    |                |          |     |     |
|                 |              |          |     |                |          |    |    |                |          |     |     |

# Mutation List Example

| Input mutations                    | Input sequences      |                                                                          |                                             |
|------------------------------------|----------------------|--------------------------------------------------------------------------|---------------------------------------------|
| Reverse Transcri                   | ptase                | Protease                                                                 | Integrase                                   |
| K65R x Y181C x<br>Input mutation(s | (M184IV x) (G190A x) | L10F x (M46I x) (I54V x) (L76V x) (V82A x)<br>(L89V x) Input mutation(s) | T97A x G140S x Q148H x<br>Input mutation(s) |

## PI Interpretation - Mutation Classification, Levels, Comments

#### Drug Resistance Interpretation: PR

| PI Major Resistance Mutations:     | M46I, I54V, L76V, V82A |
|------------------------------------|------------------------|
| PI Accessory Resistance Mutations: | L10F, L89V             |
| Other Mutations:                   | None                   |

|                      | Protease Inhibitors     |
|----------------------|-------------------------|
| atazanavir/r (ATV/r) | High-Level Resistance   |
| darunavir/r (DRV/r)  | Intermediate Resistance |
| lopinavir/r (LPV/r)  | High-Level Resistance   |

#### **PR Comments**

**PI Major** 

- M461/L are relatively non-polymorphic PI-selected mutations. In combination with other PI-resistance mutations, they are associated with reduced susceptibility to each of the PIs except DRV.
- I54V is a non-polymorphic PI-selected mutation that contributes reduced susceptibility to each of the PIs except DRV.
- L76V is a non-polymorphic mutation selected by IDV, LPV and DRV. It reduces susceptibility to these PIs and to FPV and NFV. It increases susceptibility to ATV, SQV and TPV. L76V is included in the Tibotec DRV genotypic susceptibility score.
- V82A is a non-polymorphic mutation selected primarily by IDV and LPV. It reduces susceptibility to these PIs and contributes cross-resistance to each of the remaining PIs except DRV and TPV.

#### **PI Accessory**

- L10F is a common non-polymorphic, PI-selected accessory mutation associated with reduced susceptibility to DRV, FPV, IDV, LPV, and NFV.
- L89V is a non-polymorphic PI-selected accessory mutation that contributes reduced susceptibility to FPV, DRV, NFV, and IDV. L89V is included in the Tibotec DRV genotypic susceptibility score. L89T is a rare non-polymorphic PI-selected mutation that has not been well studied.

#### **Dosage Considerations**

• There is evidence for intermediate DRV resistance. If DRV is administered it should be used twice daily.

# PI Interpretation - Scoring

Mutation Scoring: PR LPV/r PI ATV/r DRV/r M46I 154V V82A M46I + V82A 154V + V82A L10F L76V L89V M46I + L76V Total 

## RTI Interpretation - Mutation Classification and Levels

| Drug Resistance Interpretation: | RT                      |
|---------------------------------|-------------------------|
| NRTI Resistance Mutations:      | K65R, M184IV            |
| NNRTI Resistance Mutations:     | Y181C, G190A            |
| Other Mutations:                | None                    |
| Nucleoside Reverse Tra          | nscriptase Inhibitors   |
| abacavir (ABC)                  | High-Level Resistance   |
| zidovudine (AZT)                | Susceptible             |
| emtricitabine (FTC)             | High-Level Resistance   |
| lamivudine (3TC)                | High-Level Resistance   |
| tenofovir (TDF)                 | Intermediate Resistance |
| Non-nucleoside Reverse T        | ranscriptase Inhibitors |
| doravirine (DOR)                | Intermediate Resistance |
| efavirenz (EFV)                 | High-Level Resistance   |
| etravirine (ETR)                | Intermediate Resistance |
| nevirapine (NVP)                | High-Level Resistance   |
| rilpivirine (RPV)               | High-Level Resistance   |

## **RTI Interpretation - Comments**

## **RT Comments**

## NRTI

- M184V/I cause high-level in vitro resistance to 3TC and FTC and low-level resistance to ddI and ABC. However, M184V/I are not contraindications to continued treatment with 3TC or FTC because they increase susceptibility to AZT, TDF and d4T and are associated with clinically significant reductions in HIV-1 replication.
- K65R causes intermediate/high-level resistance to TDF, ddI, ABC and d4T and low/intermediate resistance to 3TC and FTC. K65R increases susceptibility to AZT.

## NNRTI

- Y181C is a non-polymorphic mutation selected in patients receiving NVP, ETR and RPV. It reduces susceptibility to NVP, ETR, RPV, and EFV by >50-fold, 5-fold, 3-fold, and 2-fold, respectively. Although Y181C itself reduces EFV susceptibility by only 2-fold, it has been associated with a reduced response to an EFV-containing regimen in NNRTI-experienced patients. Y181C has a weight of 2.5 in the Tibotec ETR genotypic susceptibility score. Alone, it does not appear to reduce DOR susceptibility.
- **G190A** is a non-polymorphic mutation that causes high-level resistance to NVP and intermediate resistance to EFV. It has a weight of 1.0 in the Tibotec ETR genotypic susceptibility score but does not appear to be selected by ETR or RPV or to reduce their in vitro susceptibility in the absence of other NNRTI-resistance mutations. It also does not appear to reduce DOR susceptibility.

# **RTI Interpretation - Scoring**

| Mutation Scoring: F | RT  |     |     |     |     |
|---------------------|-----|-----|-----|-----|-----|
| NRTI                | ABC | AZT | FTC | 3TC | TDF |
| K65R                | 45  | -15 | 30  | 30  | 60  |
| <u>M184I</u>        | 15  | -10 | 60  | 60  | -10 |
| Total               | 60  | -25 | 90  | 90  | 50  |
|                     |     |     |     |     |     |
| NNRTI               | DOR | EFV | ETR | NVP | RPV |
| <u>¥181C</u>        | 10  | 30  | 30  | 60  | 45  |
| Y181C + G190A       | 20  | 0   | 10  | 0   | 10  |
| G190A               | 0   | 45  | 10  | 60  | 15  |
| Total               | 30  | 75  | 50  | 120 | 70  |

## INSTI Interpretation - Mutation Classification, Levels, Comments

## Drug Resistance Interpretation: IN

| IN Major Resistance Mutations:     | G140S, Q148H |
|------------------------------------|--------------|
| IN Accessory Resistance Mutations: | T97A         |
| Other Mutations:                   | None         |

### **Integrase Strand Transfer Inhibitors**

| bictegravir (BIC)  | High-Level Resistance |
|--------------------|-----------------------|
| dolutegravir (DTG) | High-Level Resistance |
| elvitegravir (EVG) | High-Level Resistance |
| raltegravir (RAL)  | High-Level Resistance |

### **IN Comments**

## IN Major

- G140S/A/C are non-polymorphic mutations that usually occur with Q148 mutations. Alone, they have minimal effects on INSTI susceptibility. However, in combination with Q148 mutations they are associated with high-level resistance to RAL and EVG and intermediate reductions in DTG and BIC susceptibility.
- Q148H/K/R are non-polymorphic mutations selected by RAL, EVG, and rarely DTG. Q148H/R/K are associated with high-level reductions in RAL and EVG susceptibility particularly when they occur In combination with E138 or G140 mutations. Alone, Q148H/K/R have minimal effects on DTG and BIC susceptibility. But in combination with E138 and G140 mutations they cause moderate and occasionally high-level reductions in DTG and BIC susceptibility.

### **IN Accessory**

• **T97A** is a polymorphic INSTI-selected mutation that, depending on subtype, occurs in 1% to 5% of viruses from untreated persons. Alone, it has minimal effects on INSTI susceptibility but in combination with other major resistance mutations, it synergistically reduces susceptibility to EVG, RAL, DTG, and possibly BIC.

### **Dosage Considerations**

• There is evidence for high-level DTG resistance. If DTG is used, it should be administered twice daily.

# **INSTI Interpretation - Scoring**

## Mutation Scoring: IN

| INSTI                | BIC | DTG | EVG | RAL |
|----------------------|-----|-----|-----|-----|
| <u>G1405</u>         | 10  | 10  | 30  | 30  |
| <u>Q148H</u>         | 25  | 25  | 60  | 60  |
| <u>T97A + Q148H</u>  | 15  | 15  | 0   | 0   |
| <u>G140S + Q148H</u> | 10  | 10  | 0   | 0   |
| <u>T97A</u>          | 0   | 0   | 10  | 10  |
| Total                | 60  | 60  | 100 | 100 |

# Release Notes: Table of Contents

- Introduction
- <u>User Interfaces</u>
  - o <u>Mutation List Interface</u>
  - Sequence Interface
  - Web Service
- Output Options
  - HTML Output
  - Spreadsheet output files
    - Sequence summary
    - Resistance summary
    - Formatted amino acid alignments
  - XML Output
  - <u>Data Files</u>

- Drug Resistance Mutations (DRMs) and Sequence Interpretation
  - DRM classification
  - DRM penalty scores and resistance interpretation
  - o Comments
- Program and Algorithm Updates
  - Program Updates
  - <u>Algorithm Updates</u>
- <u>HIVseq</u>
- <u>HIValg</u>
- <u>Algorithms</u>
- Subtyping program

# Program Input Options

| Input                         | Output                                                                                                                                 | No. Samples | Input Format                  | Output Format              |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|----------------------------|
| Mutation List                 | Mutation<br>classification<br>Predicted ARV activity<br>Mutation comments<br>Mutation penalty<br>scores                                | 1           | Text box<br>Drop-down menu    | HTML                       |
| DNA Sequence                  | Mutation<br>classification<br>Predicted ARV activity<br>Mutation comments<br>Mutation penalty<br>scores<br>Sequence quality<br>control | 1 to 10000  | Text box<br>Upload FASTA File | HTML<br>Spreadsheet<br>XML |
| <u>Sierra Web Service 2.0</u> | Mutation<br>classification<br>Predicted ARV activity<br>Mutation comments<br>Mutation penalty<br>scores<br>Sequence quality<br>control | Unlimited   | User script                   | JSON                       |

# Program HTML Output

## HTML Output

HTML output contains the output for either one sequence or for multiple sequences. Reports for sequences contain a menu bar that allows the user to choose the report for a specific sequence. The HTML output includes the following information:

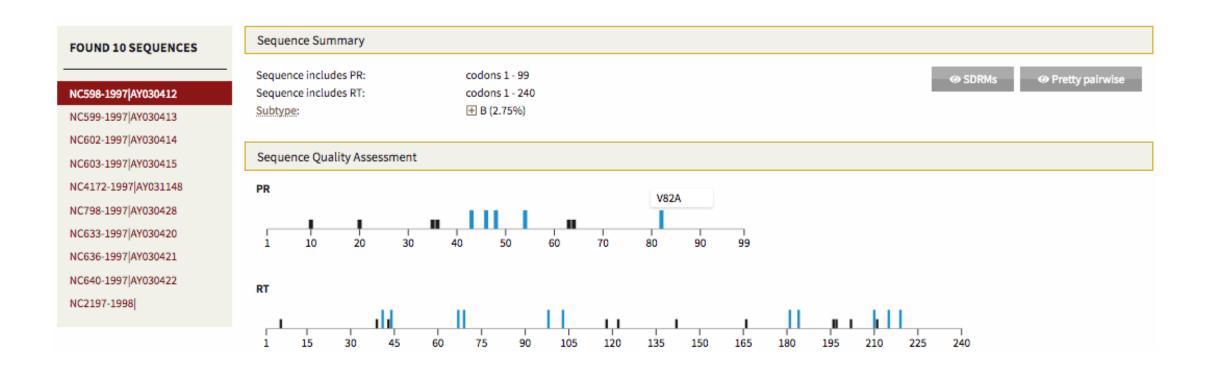
- 1. Header: This contains the SequenceID, which is the fasta header and a Date field containing the date the program was run
- Summary Data: This section shows which residues in PR, RT, and/or IN were present in the submitted sequence and the closest matching subtype. This section also contains two buttons. The "Pretty pairwise" button displays how each gene of a sequence aligns to the consensus reference sequence. The "SDRMs" button indicates the surveillance DRMs present in the sequence.
- 3. Sequence Quality Assessment: This section contains figures for each gene in which each mutation is indicated by a bar. Blue bars indicate DRMs, black bars indicate differences from the consensus amino acid sequence, and red bars indicate problematic mutations. Hovering over the bar displays the mutation text. This section will also contain warnings if there are indicators of overall or localized poor sequence quality including the presence of stop codons, frame shifts, unusual insertions or deletions, APOBEC-mediated G-to-A hypermutation, and an excess of highly unusual mutations.
- 4. Mutation Classification: PR mutations are classified into Major DRMs, Accessory DRMs, and mutations that do not receive mutation penalty scores (Other). RT mutations are classified into NRTI DRMs, NNRTI DRMs, and Other. IN mutations are classified into Major DRMs, Accessory DRMs, and Other.
- 5. Drug Resistance Interpretation: For PR, drug-resistance interpretations are provided for each of the ritonavir-boosted PIs. For RT, interpretations are provided for seven NRTIs and four NNRTIs. For IN, interpretations are provided for the three FDA-approved INSTIs.
- 6. **Comments:** Comments are provided for (i) All DRMs with a mutation penalty score, (ii) Unscored mutations that have been associated with drug resistance but are considered to have minimal or no impact on currently used ARVs, and (iii) Highly unusual mutations at known drug-resistance positions that are not established DRMs.
- 7. Scoring Table: There is one table for each ARV class. The first column indicates each of the DRMs and DRM combinations that contributed to the overall penalty score for one or more ARVs. The remaining columns contain the penalty scores for the ARVs indicated in the column header. The total penalty score for each ARV -- obtained by adding each of the individual scores -- is shown in the column header.

# Program Spreadsheet Output Files

## **Spreadsheet output files**

There are three types of spreadsheet / tabular output files for the HIVdb program: (i) Sequence summary; (ii) Resistance summary; and (iii) Formatted amino acid alignments for each gene. These files are useful for users submitting sets of sequences. These files contain tab-delimited text files that can readily be opened in Excel or compatible spreadsheet software. These files are downloaded into the user's download directory. If more than one output file is requested, the files are downloaded as a zip file.

## Sequence summary


After the header row, each row contains one sequence. The fields are organized into the following types of information:

- 1. SequenceID: The fasta headers of the submitted sequences.
- 2. Gene coverage: The first and last residue of PR, RT, and/or IN.
- 3. **Subtype:** Subtype information including the best matching subtype and its genetic distance from one of 200 reference sequences. For more detailed information about the sequence references and decision making process, please refer to this page: <u>HIV Subtyping Program</u>.
- 4. Percentage of ambiguities (Pcnt Mix): Percentage of nucleotides with R (A/G), Y (C/T), M (A/C), W (A/T), S (G/C), or K (G/T).
- 5. Mutation Classification: PR mutations are classified into Major DRMs, Accessory DRMs, and mutations that do not receive mutation penalty scores (Other). RT mutations are classified into NRTI DRMs, NNRTI DRMs, and Other. IN mutations are classified into Major DRMs, Accessory DRMs, and Other. For each gene in a sequence, there are three comma-separated lists of mutations. Columns contain 'None' when there are no mutations belonging to the relevant classification. Columns contain 'NA' when the relevant gene was not sequenced.
- 6. Surveillance Drug Resistance Mutations (SDRMs): The SDRMs present in PR and RT.
- 7. Additional treatment-selected mutations (TSMs): TSMs are mutations that are non-polymorphic in ARV-naive individuals but occur with significantly increased frequency in ARVexperienced individuals. The most common TSMs are also DRMs. However, many TSMs are not established DRMs because they are either uncommon and/or they usually occur in sequences containing multiple DRMs and therefore have not been well studied.
- 8. Sequence Quality Assessment: For each gene, frame shifts, insertions and deletions, stop codons, mutations indicative of APOBEC-mediated G-to-A hypermutation, highly ambiguous nucleotides (B, D, H, V, N), and highly unusual amino acids.

# HIVDB Program Landing Page

| Input mutations Input sequences                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Header: (optional)                                                                                                                                                        |
| Upload text file: Choose File No file chosen                                                                                                                              |
| >NC598-1997 AY030412                                                                                                                                                      |
| CCTCAAATCACTCTTTGGCAACGACCCATCGTCACAATAAAGATAGGGGGGGG                                                                                                                     |
| AGACAGTATGATCAGATACCTGTAGAAATTTGTGGACATAAAGCTATAGGTACAGTRTTAGTAGGACCTACACCTGCCAACATAATTGGAAGAAATCTGTTGACYCAGATTGGTTGCACTTTAAATTTTCCCATTAGTCCTATTGACACTGTACCAGTAAAATTAAAGC |
|                                                                                                                                                                           |
| AATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAAGACTTCTGGGAAGTTCAATTAGGAATACCACATCCCGGAGGGTTAAAAAAGAACAAATCAGTACTGGATGTGGGTGATGCATATTTTTCARTTCCCTTAGATGAAGACTTCAGGA        |
| AGTATACTGCATTTACCATACCTAGTATAAACAATGAGACACCAGGGACTAGATATCAGTACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAAAGTAGCATGACAAGAATCTTAGAAAACAGAAACAGAAATCCAGAAAATGTGCTATCTGTCA  |
| ATAYGTGGATGATTTGTATGTAGGATCTGACTTAGAAATAGAGMAGCATAGAACAAAAGTAGAGGAACTGAGAACAACATTTGTGGAAGTGGGGGNTTTTACACACCAGACAAMAAACATCAGAAAGAACCTCCATTCCTTTGGATGGGTTATGAACTCCATCCTGATA |
| AATGGACA                                                                                                                                                                  |
| Output options                                                                                                                                                            |
| HTML     Printable HTML     Spreadsheets (TSV)     XML                                                                                                                    |
| Reset Analyze                                                                                                                                                             |

## HIVDB Program: Input 10 Sequences. HTML Header



## HIVDB Program: Alignment, Subtype, Surveillance DRMs

| Sequence Summary       |          |             |          |                          |                   |           |           |          |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
|------------------------|----------|-------------|----------|--------------------------|-------------------|-----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|----------|----------|----------|-----------|----------|
| Sequence includes PR:  |          |             | c        | odons 1                  | - 99              |           |           |          |          |          |          |          |          |          |          |          | 0         | SDRMs    |          | 🔅 Pre    | etty pair | rwise    |
| Sequence includes RT:  |          |             | c        | odons I                  | - 240             |           |           |          |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
| Subtype:               |          |             | E        | B (2.7                   | 5%)               |           |           |          |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>D860</li> </ul> | 69: Fra           | nce (19   | 83); B (  | 2.75%)   | ; best r | natch    |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>AF25</li> </ul> | <u>6204</u> : S   | pain (1   | 989); B   | (2.85%)  | )        |          |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>K034</li> </ul> | 55: Frai          | nce (19   | 83); B (2 | .95%)    |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>AF04</li> </ul> | <u>2100</u> : A   | ustralia  | (1986)    | ; B (3.1 | 5%)      |          |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>EU83</li> </ul> | 9600: H           | laiti (20 | 05); B (  | 3.34%)   |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>U430</li> </ul> |                   |           |           | -        | -        |          |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>DQ35</li> </ul> | 5 <u>8805</u> : E | Brazil (2 | 002); B   | (3.44%   | )        |          |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>U636</li> </ul> |                   |           |           |          | -        |          |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>AF15</li> </ul> | <u>6820</u> : U   | Inited S  | tates (1  | 997); B  | (3.54%   | )        |          |          |          |          |          |          |           |          |          |          |           |          |
|                        |          |             |          | <ul> <li>EF69</li> </ul> |                   |           | 06); B (  | 3.54%)   |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
| PR SDRMs:              |          |             |          | 1461, G4                 |                   |           |           |          |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
| RT SDRMs:              |          |             | N        | 141L, De                 | 57N, T6           | 9D, K10   | 3N, Y18   | 1C, M1   | 84V, L2: | 10W, T2  | 15Y, K2  | 19N      |          |          |          |          |           |          |          |          |           |          |
| Pretty pairwise of PR: | Scroll   | right for   | more »   |                          |                   |           |           |          |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
| 1 2 3                  | 4        | 5           | 6        | 7                        | 8                 | 9         | 10        | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20        | 21       | 22       | 23       | 24        | 25       |
| PQI                    | т        | L           | W        | Q                        | R                 | Р         | L         | v        | т        | I        | К        | I        | G        | G        | Q        | L        | K         | Е        | Α        | L        | L         | D        |
| CCT CAA ATC            | ACT<br>- | CTT<br>-    | TGG<br>- | CAA<br>-                 | CGA<br>-          | ccc<br>-  | ATC<br>I  | GTC<br>- | ACA<br>- | ATA<br>- | AAG<br>- | ATA<br>- | GGG<br>- | GGG<br>- | CAG<br>- | CTA<br>- | ARG<br>KR | GAA<br>- | GCT<br>- | CTA<br>- | TTA<br>-  | GAT<br>- |
|                        |          |             |          |                          |                   |           |           |          |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
| Pretty pairwise of RT: | Scroll   | right for 1 | more >>  |                          |                   |           |           |          |          |          |          |          |          |          |          |          |           |          |          |          |           |          |
| 1 2 3                  | 4        | 5           | 6        | 7                        | 8                 | 9         | 10        | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20        | 21       | 22       | 23       | 24        | 25       |
| PIS                    | P        | I           | E        | Ť                        | v                 | P         | v         | ĸ        | L        | ĸ        | P        | G        | M        | D        | G        | P        | ĸ         | v        | ĸ        | Q        | W         | P        |
| 0.00 300 300           | 0.00     | 3.000       | 0.2.0    |                          |                   | 003       |           |          |          |          |          |          |          |          |          |          |           |          |          |          | -         |          |
| CCC ATT AGT            | CCT      | ATT         | GAC      | ACT                      | GTA               | CCA       | GTA       | AAA      | TTA      | AAG      | CCA      | GGA      | ATG      | GAT      | GGC      | CCA      | AAA       | GTT      | AAA      | CAA      | TGG       | CCA      |

## **HIVDB** Program: PR Interpretation

## Drug Resistance Interpretation: PR

| PI Major Resistance Mutations:     | M46MI, G48V, I54T, V82A             |
|------------------------------------|-------------------------------------|
| PI Accessory Resistance Mutations: | К43Т                                |
| Other Mutations:                   | L10I, K20KR, E35D, M36I, L63P, I64V |

#### Protease Inhibitors

| atazanavir/r (ATV/r) | High-Level Resistance |
|----------------------|-----------------------|
| darunavir/r (DRV/r)  | Susceptible           |
| lopinavir/r (LPV/r)  | High-Level Resistance |

#### PR Comments

PI Major

- M46I/L are relatively non-polymorphic PI-selected mutations. In combination with other PI-resistance mutations, they are associated with reduced susceptibility to each of the PIs except DRV.
- G48V is a non-polymorphic mutation selected by SQV and, less often, by IDV and LPV. It confers high-level resistance to SQV, intermediate resistance to ATV, and low-level resistance to NFV, IDV and LPV.
- I54A/T/S are non-polymorphic PI-selected mutations that occur almost exclusively in viruses with multiple PI-resistance mutations. I54A/T/S are associated with reduced susceptibility to each of the PIs except DRV.
- V82A is a non-polymorphic mutation selected primarily by IDV and LPV. It reduces susceptibility to these PIs and contributes cross-resistance to each of the remaining PIs except DRV and TPV.

### PI Accessory

• K43T is a non-polymorphic PI-selected accessory mutation. K43T is included in the Boehringer-Ingelheim TPV genotypic susceptibility score.

### Other

- L10I/V are polymorphic, PI-selected accessory mutations that increase the replication of viruses with other PI-resistance mutations.
- K20R is a highly polymorphic PI-selected accessory mutation.

# HIVDB Program: PI scores

| Matation Scoring |       |       |       |
|------------------|-------|-------|-------|
| PI               | ATV/r | DRV/r | LPV/r |
| <u>M461</u>      | 10    | 0     | 10    |
| G48V             | 30    | 0     | 10    |
| 154T             | 15    | 0     | 15    |
| V82A             | 15    | 0     | 30    |
| M461 + V82A      | 10    | 0     | 10    |
| 154T + V82A      | 10    | 0     | 10    |
| K43T             | 0     | 0     | 0     |
| Total            | 90    | 0     | 85    |

Mutation Scoring: PR

## **HIVDB** Program: RT Interpretation

### Drug Resistance Interpretation: RT

| NRTI Resistance Mutations:  | M41L, E44D, D67N, T69D, M184V, L210W, T215Y, K219KN                        |
|-----------------------------|----------------------------------------------------------------------------|
| NNRTI Resistance Mutations: | A98G, K103N, Y181C                                                         |
| Other Mutations:            | E6D, T39A, K43EQ, V118VI, K122E, I142T, K166R, G196E, Q197QK, I202V, R211K |
| Nucleoside Reverse Tran     | scriptase Inhibitors                                                       |
| abacavir (ABC)              | High-Level Resistance                                                      |
| zidovudine (AZT)            | High-Level Resistance                                                      |
| emtricitabine (FTC)         | High-Level Resistance                                                      |
| lamivudine (3TC)            | High-Level Resistance                                                      |
| tenofovir (TDF)             | High-Level Resistance                                                      |
| Non-nucleoside Reverse T    | ranscriptase Inhibitors                                                    |
| doravirine (DOR)            | Intermediate Resistance                                                    |
| efavirenz (EFV)             | High-Level Resistance                                                      |
| etravirine (ETR)            | Intermediate Resistance                                                    |
| nevirapine (NVP)            | High-Level Resistance                                                      |
| rilpivirine (RPV)           | High-Level Resistance                                                      |

#### **RT Comments**

NRTI

- M184V/I cause high-level in vitro resistance to 3TC and FTC and low-level resistance to ddl and ABC. However, M184V/I are not contraindications to continued treatment with 3TC or FTC because they increase susceptibility to AZT, TDF and d4T and are associated with clinically significant reductions in HIV-1 replication.
- L210W is a TAM that usually occurs in combination with M41L and T215Y. The combination of M41, L210W and T215Y causes high-level resistance to AZT and d4T and intermediate to high-level resistance to ddI, ABC and TDF.
- T215Y is a TAM that causes intermediate/high-level resistance to AZT and d4T, low-level resistance to ddl, and potentially low-level resistance to ABC and TDF.
- K219N/R are accessory TAMS that usually occur in combination with multiple other TAMs.
- M41L is a TAM that usually occurs with T215Y. In combination, M41L plus T215Y confer intermediate / high-level resistance to AZT and d4T and contribute to reduced ddI, ABC and TDF susceptibility.
- E44D is a relatively non-polymorphic accessory mutation and E44A is a nonpolymorphic accessory mutation. Each usually occurs with multiple TAMs.
- D67N is a non-polymorphic TAM associated with low-level resistance to AZT and d4T. When present with other TAMs, it contributes reduced susceptibility to ABC, ddl, and TDF.
- T69D is a non-polymorphic mutation that reduces susceptibility to ddI and possibly d4T.

NNRTI

K103N is a non-polymorphic mutation that causes high-level reductions in NVP and EFV susceptibility.

# HIVDB Program: NRTI and NNRTI Scores

| Mutation Scoring: F            | RT  |     |     |     |     |
|--------------------------------|-----|-----|-----|-----|-----|
| NRTI                           | ABC | AZT | FTC | ЗТС | TDF |
| M41L                           | 5   | 15  | 0   | 0   | 5   |
| D67N                           | 5   | 15  | 0   | 0   | 5   |
| M184V                          | 15  | -10 | 60  | 60  | -10 |
| L210W                          | 5   | 15  | 0   | 0   | 5   |
| T215Y                          | 10  | 40  | 0   | 0   | 10  |
| K219N                          | 5   | 10  | 0   | 0   | 5   |
| M41L + E44D +<br>L210W + T215Y | 5   | 5   | 0   | 0   | 5   |
| M41L + D67N +<br>T215Y         | 5   | 5   | 5   | 5   | 5   |
| M41L + L210W                   | 10  | 10  | 0   | 0   | 10  |
| M41L + L210W +<br>T215Y        | 5   | 0   | 5   | 5   | 5   |
| M41L + T215Y                   | 15  | 10  | 5   | 5   | 10  |
| D67N + T215Y +<br>K219N        | 5   | 5   | 0   | 0   | 5   |
| L210W + T215Y                  | 10  | 10  | 5   | 5   | 10  |
| T69D                           | 0   | 0   | 0   | 0   | 0   |
| Total                          | 100 | 130 | 80  | 80  | 70  |
|                                |     |     |     |     |     |
| NNRTI                          | DOR | EFV | ETR | NVP | RPV |
| A98G                           | 15  | 15  | 10  | 30  | 15  |
| ¥181C                          | 10  | 30  | 30  | 60  | 45  |
| A98G + ¥181C                   | 5   | 5   | 5   | 5   | 5   |
| K103N + Y181C                  | 10  | 0   | 0   | 0   | 0   |
| K103N                          | 0   | 60  | 0   | 60  | 0   |
| Total                          | 40  | 110 | 45  | 155 | 65  |