Southern African HIV Clinicians Society
3rd Biennial Conference
13 - 16 April 2016
Sandton Convention Centre
Johannesburg

Our Issues, Our Drugs, Our Patients

www.sahivsoc.org
www.sahivsoc2016.co.za
HIV life cycle revisited: What’s new in basic science?

Theresa Rossouw
Outline of the Presentation

• Lifecycle overview
• New drugs & therapies
• Cell entry
 – Co-receptor binding
 – Attachment
Keeping it Simple
Need for New & Novel Treatment

• Class resistance
• Transmission of resistant viruses
• Treatment fatigue
• Serious drug-associated pathology
New Options on the Horizon

<table>
<thead>
<tr>
<th>NRTIs</th>
<th>NNRTIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tenofovir alafenamide (TAF)</td>
<td>Doravirine</td>
</tr>
<tr>
<td>MK-8591</td>
<td>GSK 2248761 (IDX899)</td>
</tr>
<tr>
<td>Apricitabine</td>
<td>RDEA806</td>
</tr>
<tr>
<td>Elvucitabine</td>
<td>Lersivirine</td>
</tr>
<tr>
<td>Racivir</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PIs</th>
<th>INSTIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTP-518</td>
<td>Elvitegravir</td>
</tr>
<tr>
<td>GS-8374</td>
<td>Dolutegravir</td>
</tr>
<tr>
<td>PPL-100</td>
<td>Cabotegravir</td>
</tr>
<tr>
<td></td>
<td>GSK-572</td>
</tr>
</tbody>
</table>
Novel Treatment Options

- Maturation inhibitor
 - BMS-955176
 - Vivecon (MP-9055)
- New target: Rev-mediated viral RNA biogenesis
 - ABX464
- Monoclonal antibodies
 - Broadly neutralising antibody VRC01
 - Anti-PD-1 (pembrolizumab)
 - CD4 - TNX-355, TBM-360
- eCD4-Ig
- TLR7 agonist
 - GS9620 – reversal of latency
- Genetic therapy & stem cell research
Entry Inhibition

• Act outside the cell
• No concerns about:
 – Intracellular drug penetration
 – Interactions with drugs metabolized by cytochrome P450
 • PIs and NNRTIs
 – Disruptions of lipid homeostasis
Entry Inhibition

Attachment
DC-SIGN

CD4 Binding
PRO 542 Other Ab

Coreceptor Binding
CCR5 CXCR4
SCH-C AMD3100
SCH-D ALX40-4C
TAK779 T22
PRO 140

Hairpin Formation and Membrane Fusion
T-20 T-1249
5-Helix
Co-receptors

• Most infections result from virus strains that use CCR5 in addition to CD4 to infect cells
 – R5 virus strains
 – Predominate in first few years

• Mutations may accumulate in Env that enable it to use CXCR4
 – X4 or R5X4 strains
 – Accelerated disease progression
 – In part because CXCR4 is expressed on a much greater fraction of CD4+ T cells than CCR5
18% of Northern Europeans lack CCR5 due to a naturally occurring polymorphism in the CCR5 open reading frame—CCR5 δ32.

These individuals are highly resistant to HIV infection. People with naturally reduced CCR5 expression experience slower HIV disease progression.
Flurry of New CCR5 Antagonists

First anti-HIV agents that target host proteins rather than viral enzymes or proteins

<table>
<thead>
<tr>
<th>CCR5 inhibitors</th>
<th>Company</th>
<th>Status</th>
<th>Disease</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAK-652 (TBR-652)</td>
<td>Takeda/Tobira</td>
<td>Phase II</td>
<td>HIV</td>
<td>A potent, orally bioavailable CCR5 antagonist</td>
</tr>
<tr>
<td>Aplaviroc</td>
<td>Ono</td>
<td>Terminated (Phase II/III)</td>
<td>HIV</td>
<td>Aplaviroc's development was stopped because of hepatotoxicity</td>
</tr>
<tr>
<td>Maraviroc</td>
<td>Pfizer</td>
<td>Approved by US FDA</td>
<td>HIV</td>
<td>The first FDA-approved CCR5 antagonist</td>
</tr>
<tr>
<td>PF-232798</td>
<td>Pfizer</td>
<td>Phase II</td>
<td>HIV</td>
<td>A second-generation Pfizer oral CCR5 antagonist</td>
</tr>
<tr>
<td>Vicriviroc</td>
<td>Schering-Plough/Merck</td>
<td>Terminated (Phase III)</td>
<td>HIV</td>
<td>Vicriviroc did not meet the primary efficacy endpoint</td>
</tr>
<tr>
<td>INCB9471</td>
<td>Incyte</td>
<td>Phase II</td>
<td>HIV</td>
<td>A new class of oral CCR5 antagonist</td>
</tr>
</tbody>
</table>
CCR5/CCR2 Inhibitor

- Cenicriviroc (formerly TBR-652)
- CCR2 receptor binds to monocyte chemo-attractant protein 1 (MCP-1)
 - Promotes migration of monocytes
 - Role in inflammation
 - Implicated in a range of conditions including liver fibrosis, metabolic syndrome and cardiovascular disease.
- Phase II
 - Lower sCD14
 - High sCD14 independent predictor of all-cause death in SMART
- High drop-out rate because of a complicated dosing
Resistance

• Two mechanisms
 – Changing the way it uses co-receptors
 • Use the same co-receptor but in a drug-bound form
 • Many mutations in gp120 region of HIV-1 Env, especially in the V2 and V3 regions
 – Switching co-receptor usage
 • CCR5 \rightarrow CXCR4
Concern with Blocking CCR5

Original Article

CRF19_cpx is an Evolutionary fit HIV-1 Variant Strongly Associated With Rapid Progression to AIDS in Cuba
Concerns with Blocking CCR5

• Current consensus: CCR5 & CXCR4 are major co-receptors
• Additional chemokine receptors have been reported to act as alternative co-receptors for CD4 when they are over-expressed
 – CCR2b, CCR3, CCR8, CCR9, CXCR6, CXCR1
Safety Concerns

• Normal function of CCR5 & CXCR4 not fully understood
• Might disrupt normal immune function
• CCR5 δ32 mutation
 – No serious or life-threatening immunological impairment
 – But some degree of immune dysfunction
 • Lower risk of organ rejection after transplantation
 • Lower likelihood of clearing hepatitis C virus
 • Higher risk of symptomatic West Nile virus infection
• Genetically engineered CCR5-deficient mice have impaired immune responses to certain OIs
Interest in Blocking CXCR4

• Interaction between CXCR4 and its ligand SDF-1 is involved in various disease conditions
 – cancer cell metastasis
 – leukemia cell proliferation
 – rheumatoid arthritis
 – pulmonary fibrosis
 – CXCR4 is expressed in >23 human cancers – breast, ovarian, hepatocellular, hematological, lung, brain, prostate

• CXCR4 inhibitors have potential as novel therapeutics for the treatment of these diseases as well as HIV infection
CXCR4 Antagonists

<table>
<thead>
<tr>
<th>Compound</th>
<th>Company</th>
<th>Stage of development</th>
<th>Disease</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALX40-4C</td>
<td>NPS Allelix</td>
<td>Terminated (Phase I/II)</td>
<td>HIV</td>
<td>No apparent effect was observed on viral load</td>
</tr>
<tr>
<td>AMD3100</td>
<td>AnorMED</td>
<td>Terminated (Phase I/II)</td>
<td>HIV</td>
<td>Little effect was observed on viral load</td>
</tr>
<tr>
<td>AMD3100</td>
<td>Genzyme</td>
<td>Approved by US FDA</td>
<td>Stem cell mobilizer</td>
<td>Use in combination with G-CSF</td>
</tr>
<tr>
<td>AMD3100</td>
<td>Genzyme</td>
<td>Suspended (Phase I/II)</td>
<td>HIV</td>
<td>A derivative of AMD3100 that can be orally administered. Liver histology changes were observed in long-term preclinical toxicity experiments.</td>
</tr>
<tr>
<td>T140</td>
<td>Kyoto University</td>
<td>Preclinical</td>
<td>HIV, cancer metastasis, leukemia, rheumatoid arthritis</td>
<td>A downsized analog of T22 peptide that specifically inhibits CXCR4</td>
</tr>
<tr>
<td>KRH-3955</td>
<td>Kureha</td>
<td>Preclinical</td>
<td>HIV, cancer metastasis</td>
<td>A highly potent, orally bioavailable CXCR4 antagonist</td>
</tr>
</tbody>
</table>
Safety Concerns

• Even less is known blocking CXCR4
• CXCR4 is expressed in a wide variety of normal tissues
 – lymphoid tissues, thymus, brain, spleen, stomach & small intestine
• Mice lacking CXCR4 have abnormal hematopoiesis, cardiogenesis & vascularization
• SDF-1/CXCR4 interaction is critical for:
 – retention of hematopoietic stem cells in BM
 – foetal hematopoiesis
New Strategies

CD4 Attachment Inhibitor – BMS-663068 (fostemsavir)

Figure 2

[Diagram showing the mechanism of action of the CD4 attachment inhibitor (fostemsavir), BMS-663068, compared to a control with no drug. The diagram illustrates the effect of the drug on conformational changes and CD4 binding, highlighting BMS-626529 binding.]
Combinectin (BMS-986197)

• Novel recombinant biologic molecule
• 3 independent & synergistic modes of blocking HIV entry
• Potential as single long-acting regimen for HIV-1 as a self-administered s/c weekly injection
• Adnectins are small proteins
 – Derived from human fibronectin protein
 – Modifiable binding loops resembling certain antibody regions
Combinectin

1. Anti-CD4 adnectin: allows binding to the receptor, but prevents conformational changes needed for binding to co-receptors
2. Anti-gp41 adnectin: attacks the N17 sequence of the HIV gp41 envelope protein subunit
3. Alpha-helical peptide fusion inhibitor: works similarly to enfuvirtide

Human serum albumin (HSA) molecule: optimize in vivo PK

Early laboratory and animal studies
Conclusion

• New options on the horizon
 – Less toxic
 – Less frequent dosing
 – Possibly even self-administered injections

• More options for patients with drug-resistant virus
Thank You