Overview On Vaccination

Southern African HIV Clinicians Society Conference, JNB, SA

27 October 2018

Benjamin Kagina <u>Benjamin.kagina@uct.ac.za</u>

Importance of vaccination

- Vaccines promote health: help people stay healthy, removing a major obstacle to human development.
- Vaccines have an expansive reach: protect individuals, communities, and entire populations (the eradication of smallpox is a case in point).
- Vaccines save lives and costs: immunization for children ranked fourth place on a list of 30 cost-effective ways of advancing global welfare (Copenhagen Consensus, 2008)
- Vaccines have rapid impact

"With the exception of safe water, no other modality...has had such a major effect on mortality reduction and population growth".

Plotkin and Mortimer in "Vaccines" 1st Ed. 1988

Presentation outline

1) How does a vaccine work?

2) What are some key determinants of successful vaccination?

3) Effects of HIV infection on vaccination

4) Should HIV be a public health concern in the control, elimination and eradication of VPDs?

5) Conclusions

1)How does a vaccine work?

2) What are key determinants of successful vaccination?

3) Effects of HIV infection on vaccination

4) Should HIV be a public health concern in the control, elimination and eradication of VPDs?

5) Conclusions

What is a vaccine?

-A vaccine is a biological preparation that improves

immunity to a particular disease

-Contains an agent that resembles a disease-

causing microorganism

-Often made from weakened or killed forms of the

microbe, its toxins or one of its surface proteins.

Ref: http://www.who.int/topics/vaccines/en/

How does a vaccine work?

Initiation of a vaccine response following injection:

(1)The pathogen-associated patterns contained in

vaccine antigens attract dendritic cells,

monocytes, and neutrophils that patrol the body

(2) Elicitation of sufficient "danger signals" by the

vaccine antigens (Ag)/adjuvants (Adj) activates

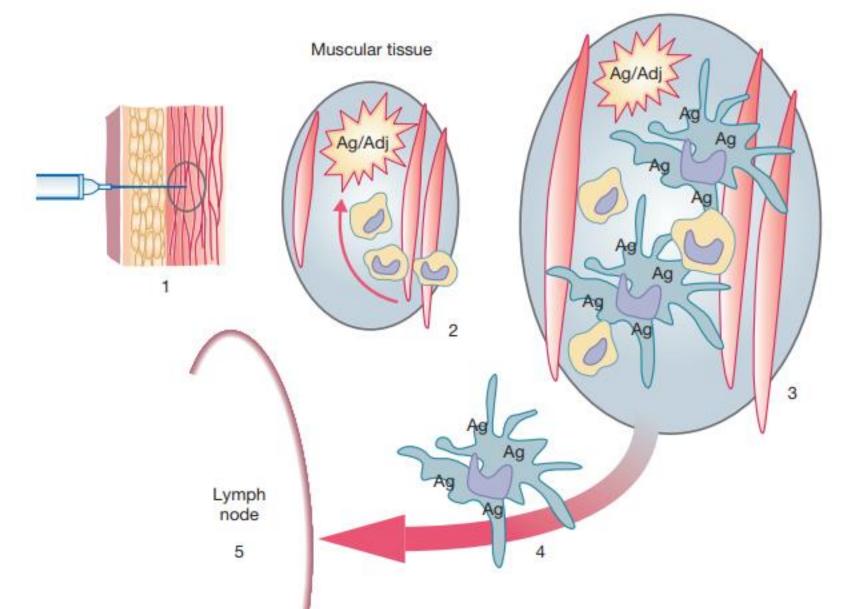
monocytes and dendritic cells

How does a vaccine work?

Initiation of a vaccine response following injection:

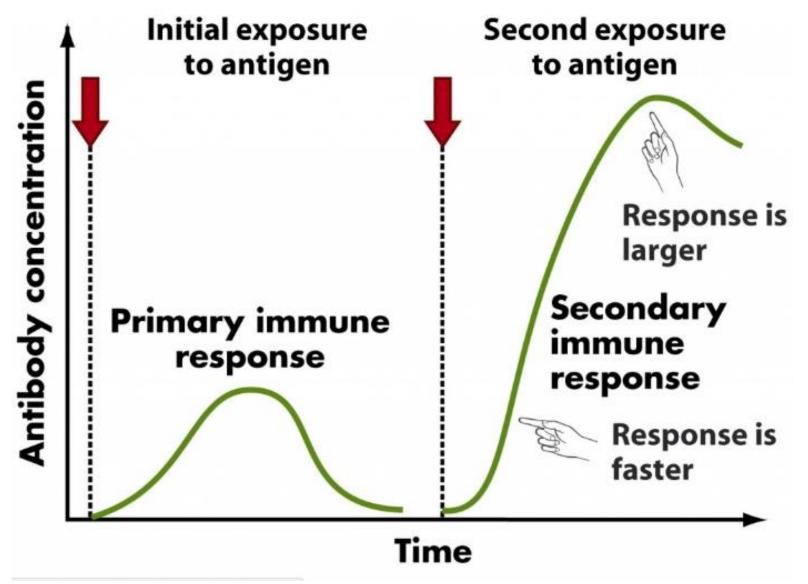
3) The activation changes their surface receptors

and induces their migration along lymphatic

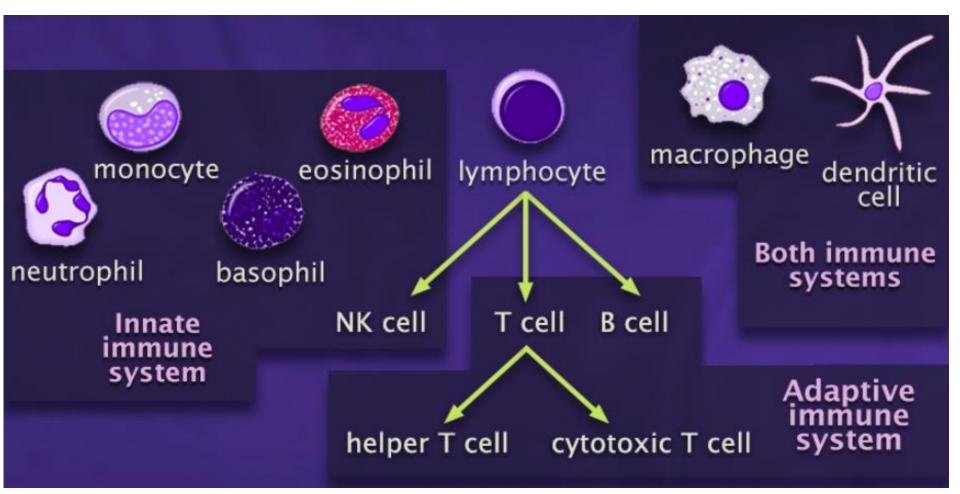

vessels

4) Migration to the draining lymph nodes

5) In the lymph nodes, the activation of T and B


lymphocytes will take place

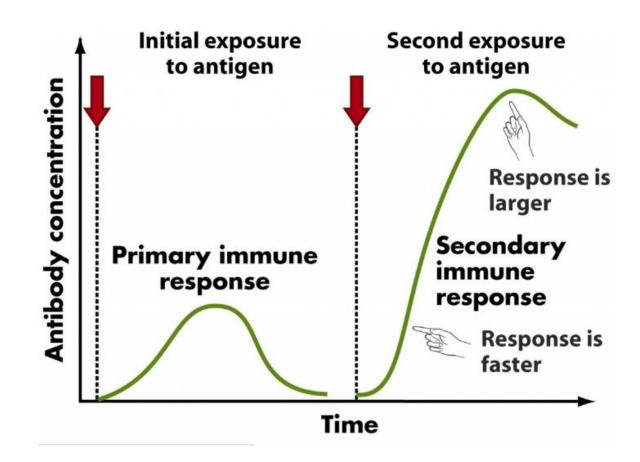
How does a vaccine work?


Ref: http://www.who.int/immunization/documents/Elsevier_Vaccine_immunology.pdf

Immune response after vaccination

Ref: https://nrvs.info/how-do-vaccines-work/

Different types of immune cells are involved


Broadly falls into: innate or adaptive immune system

Ref: https://www.hhmi.org/biointeractive/cells-of-the-immune-system

Hallmarks of vaccination

1) Specificity

2) Memory

Smallpox eradication and creation of EPI

- Smallpox eradication launched in Jan 1967. Last case reported in Somalia in 1977.
- Smallpox eradication certified in Dec 1979 -proof of the power of vaccines.
- EPI set up in 1974 at a time of great optimism for public health.

When EPI was established in **1974**, only about **5%** of the world's children were protected from the 6 diseases: **DTP**, Polio, Measles and TB

Examples of successful vaccination about 50 licensed human vaccines..

Disease	20 th Century Annual Morbidity	2005 Total	% Decrease
Smallpox	48,164	0	100
Diphtheria	175,885	0	100
Pertussis	147,271	25,616	83
Tetanus	1,314	27	98
Polio (paralytic)	16,316	1*	>99.9
Measles	503,282	66	>99.9
Mumps	152,209	314	>99
Rubella	47,745	11	>99.9
Congenital rubella	823	1	99.8
Haemophilus influenzae (<5 years)	20,000 (est)	226 (serotype B or unknown serotype)	99

Atkinson, W., Wolfe, S., Hamborsky, J., & McIntyre, L. (Eds.). (2009). Impact of vaccines in the 20th & 21st Centuries. In *Centers for disease control and prevention: Epidemiology and prevention of vaccine-preventable diseases* (Appendix G: Data and statistics) (11th ed.). Washington, D.C.: Public Health Foundation. Retrieved from http://www.cdc.gov/vaccines/pubs/pinkbook/downloads/appendices/G/impact-of-vaccines.pdf

Evolution of vaccination

However, no major success has been recorded in the development of effective **HIV**, TB, Malaria vaccines as examples.....

Led to establishment of Human Vaccine Project in

2015 aimed at detailed understanding of:

-Human immunome program (B & T cell receptors)

-The rule of immunogenicity program

-Universal influenza vaccine initiative

Expand vaccination beyond infancy

Pregnancy	Infants & Children	Adolescents	Adults	Elderly Flu GBS
CMV Flu GBS HBV Men Pertussis RSV Tetanus	Diphtheria Flu GAS HAV HBV HBV HID IPV Men Pertussis Pneumo Rotavirus RSV Tetanus	CMV dTAP boost EBV Flu HSV HPV Men	Diphtheria Flu HBV Men Pertusais RSV Tetanus	Men Pneumo RSV Zoster Candida C. difficile E. coli Klebsiella P. aeruginosa Staph Breast Cancer Colorectal Cancer Prostate Cancer
ł	*		8	55

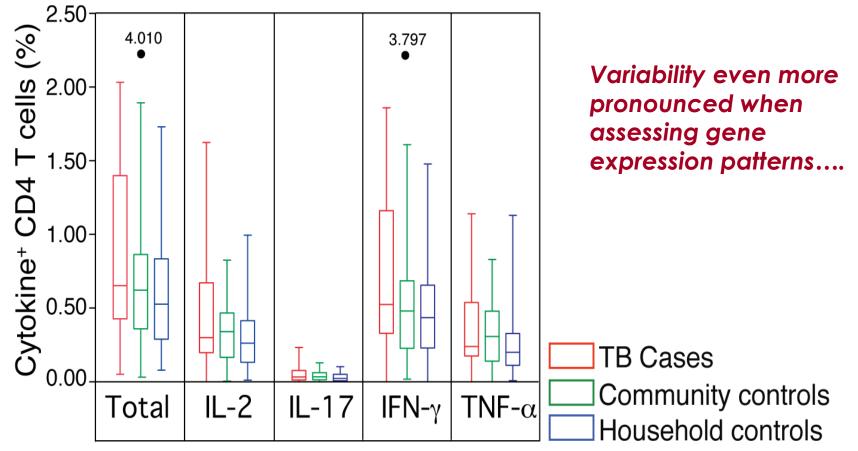
1) How does a vaccine work?

2)What are some key determinants of successful vaccination?

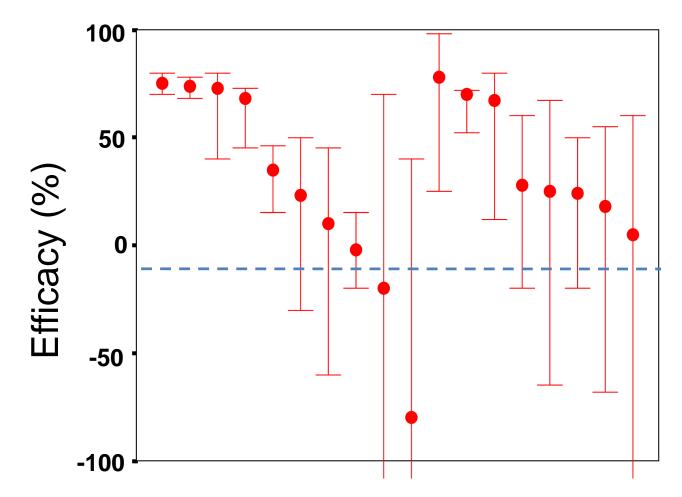
3) Effects of HIV infection on vaccination

4) Should HIV be a public health concern in the control, elimination and eradication of VPDs?

5) Conclusions


BCG vaccine

Specific T Cell Frequency and Cytokine Expression Profile Do Not Correlate with Protection against Tuberculosis after Bacillus Calmette-Guérin Vaccination of Newborns


Benjamin M. N. Kagina¹, Brian Abel¹, Thomas J. Scriba¹, Elizabeth J. Hughes¹, Alana Keyser¹, Andreia Soares¹, Hoyam Gamieldien¹, Mzwandile Sidibana¹, Mark Hatherill¹, Sebastian Gelderbloem², Hassan Mahomed¹, Anthony Hawkridge², Gregory Hussey¹, Gilla Kaplan³, Willem A. Hanekom¹, and other members of the South African Tuberculosis Vaccine Initiative¹

Kagina B. et al. AJRCCM 2010;182:1073. *BCG given at birth. Infants followed for 2 years to assess protection; Whole blood incubation with BCG at 10 weeks of age for 12 hours.

BCG-induced protection against pulmonary TB is variable

*P. Fine. 2000. BCG Vaccines and Vaccination. In: L. B. Reichman and E. S. Hershfield. Tuberculosis. A comprehensive International Approach. 2nd Edition.

Determinants of vaccination success

Demographic and Patient Characteristics

Age, Gender, Geographic location, Smoking, Body mass index, Nutritional status

Genetic Factors

HLA type Other immune response genes

Comorbid diseases

Autoimmune conditions, Renal failure, Liver failure Parasitic infections, **Immunocompromised/HIV** 1) How does a vaccine work?

2) What are some key determinants of successful vaccination?

3) Effects of HIV infection on vaccination

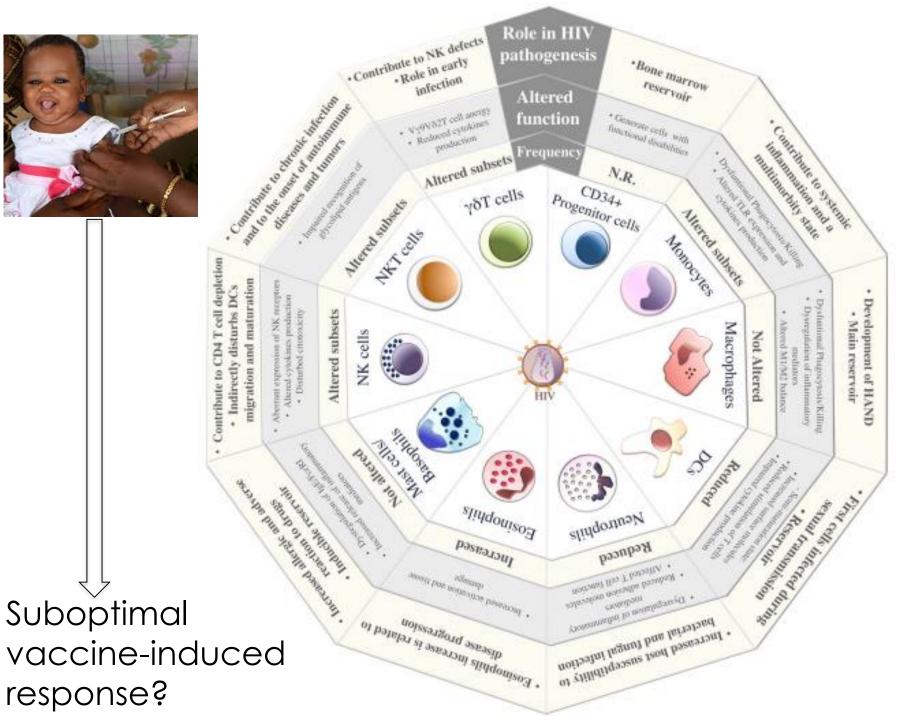
4) Should HIV be a public health concern in the control, elimination and eradication of VPDs?

5) Conclusions

Effects of HIV infection on the immune cells

Innate system: mucosal DCs and tissue macrophages are among the first cells to be infected.

Dendritic cells-infected, migrate to lymph node and interact with CD4 T cells (systemic spread of the HIV infection)


Eosinophils, $\gamma\delta$ T cells, monocytes and neutrophils may be directly infected by HIV.

HIV may even reach the bone marrow and infect **progenitor cells** and establish reservoirs

Effects of HIV infection on the immune cells

- -Alteration of **phenotypic characteristics** of innate immune cells
- -Alteration of **functional characteristics** of innate immune cells
- -Results to immune dysregulation
- -An obvious consequence is depletion of CD4 T cells

Ref: Milena SE et al., Immunol Res (2016) 64:1118–1132

Using live BCG in HIV+ babies

- Vaccine efficacy not known
- Serious adverse events BCGosis
 - (up to 110-417 per 100,000 vaccinations in RSA)
 - (Hesseling et al., Vaccine, 2007)
- Benefit/risk ratio not known

1) How does a vaccine work?

2) What are some key determinants of successful vaccination?

3) Effects of HIV infection on vaccination

4) Should HIV be a public health concern in the control, elimination and eradication of VPDs?

5) Conclusions

Adults and children estimated to be living with HIV 1990–2017

Ref: http://www.unaids.org/sites/default/files/media_asset/unaids-data-2018_en.pdf

Effects of in utero HIV on the innate immune cells

-Commonly referred to as HIV exposed uninfected (HEU)

-Neutrophils found to have an impaired production of

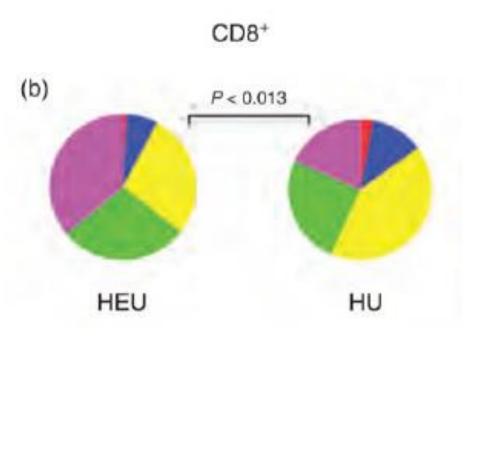
reactive oxygen species (ROS): data obtained from

Maternal venous blood and CB specimens

Effects of in utero HIV on CD4+ T cells

-Exposure to high levels of HIV-1 viremia in utero,

even in the absence of perinatal transmission, may

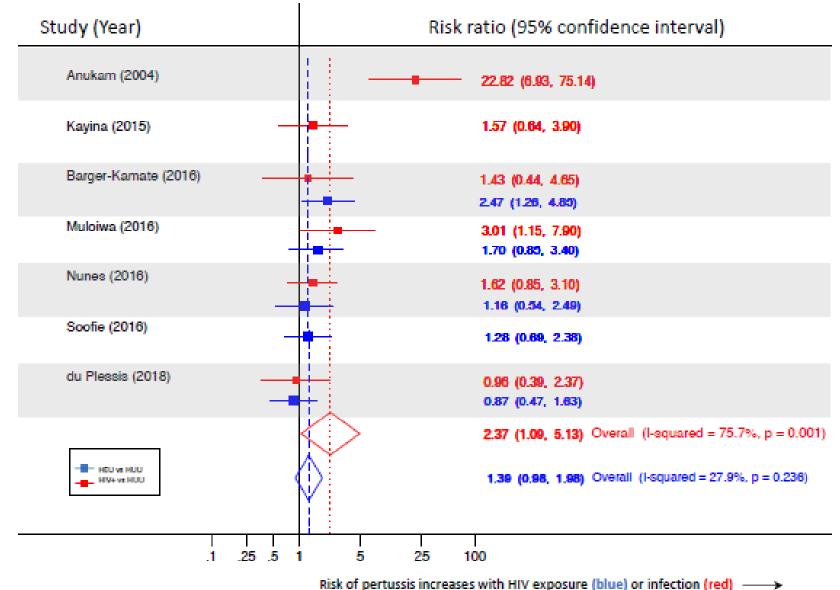

affect the infant's developing immune system:

reduced CD4 T cell counts with high maternal

viremia

Ref: Fatima Kakka et al., 2014 BMC Infec Diseases

Pertussis vaccine-induced T cell response: HEU; HU (HIV Unexposed)


Pertussis vaccination at 8 weeks Blood taken at 14 weeks

Cytokines: IL-2, IL-17, IL-13 and IFN-g

Ref: Elvis BK et al., 2014, AIDS

Risk for pertussis: HEU; HIV+

Ref: Muloiwa R et al., 2018 (Manuscript submitted)

1) How does a vaccine work?

2) What are some key determinants of successful vaccination?

3) Effects of HIV infection on vaccination

4) Should HIV be a public health concern in the control, elimination and eradication of VPDs?

5)Conclusions

Conclusions

-Vaccination is a key global public health intervention

-There are ongoing research initiatives to guide the

design of rational new vaccines

-HIV infection may cause a dysregulation of an

immune response to vaccination

Conclusions

-Vaccine-induced immune response in the presence

of HIV infection may be suboptimal

-HIV infection is a critical aspect of vaccination

programs in the control of VPDs

-Vaccination of HIV infected persons considered as a

continuum of care

Benjamin Kagina Benjamin.kagina@uct.ac.za

