hiv prevention menu

social & behavioural change

safer sexual practices, needle exchange, building next gen

barrier methods

condoms – male, female

testing

voluntary counselling and testing

circumcision

male medical circumcision

sti treatment

treating sexually transmitted infections

antiretroviral drugs

for infected patients: HAART (TasP), PMTCT for uninfected patients: PEP, PreP

under study

vaccines, rings, microbicides

AN HIV VACCINE the world's best hope for ending HIV.

UPDATE: HIV VACCINE TRIALS IN SOUTH AFRICA

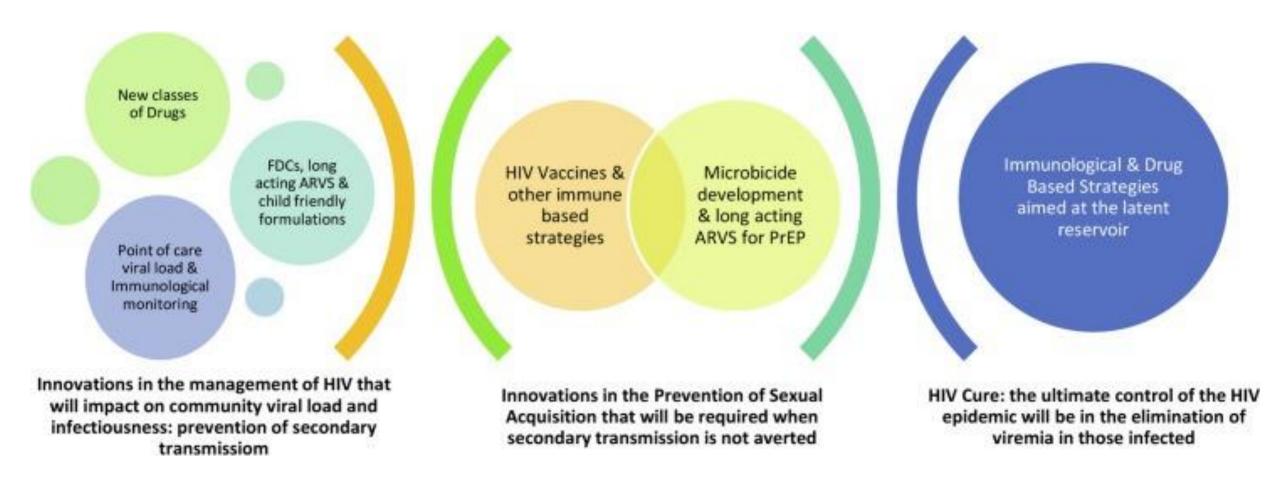
Dr Fatima Laher, Director, Vaccines Research

Centre Vaccines Research Centre

We shall conquer We shall conquer I years of research excellence PHRU | IMPROVING LIFE THROUGH RESEARCH Perinatal HV Research Und of the University of the Witwaterstark

DESPITE GREAT EFFORTS SO FAR, HIV IS NOT OVER

UNAIDS. Data 2018

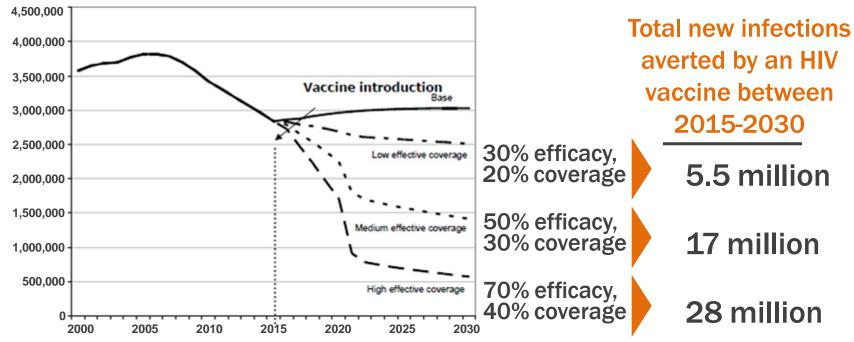

New HIV infections

People taking HAART

AIDS related deaths

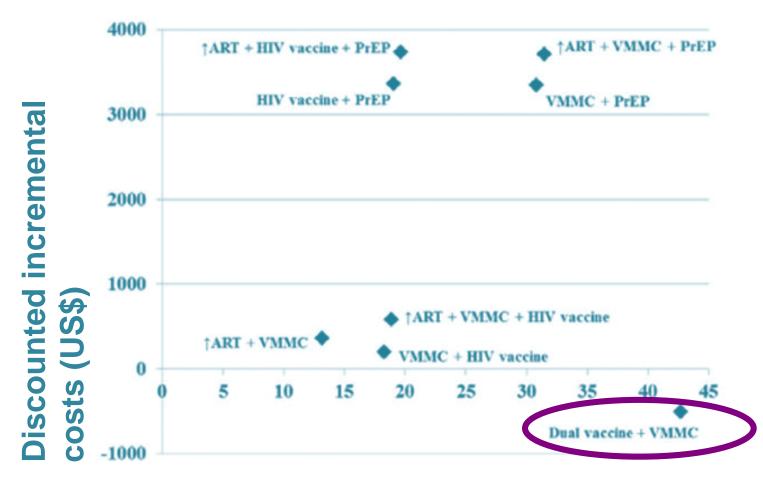
2000 2017 1.8 million 3.2 million >1 million 21.7 million 36.9 million living with HIV 940 000 1.5 million

BIOMEDICAL INNOVATION NEEDED TO END HIV

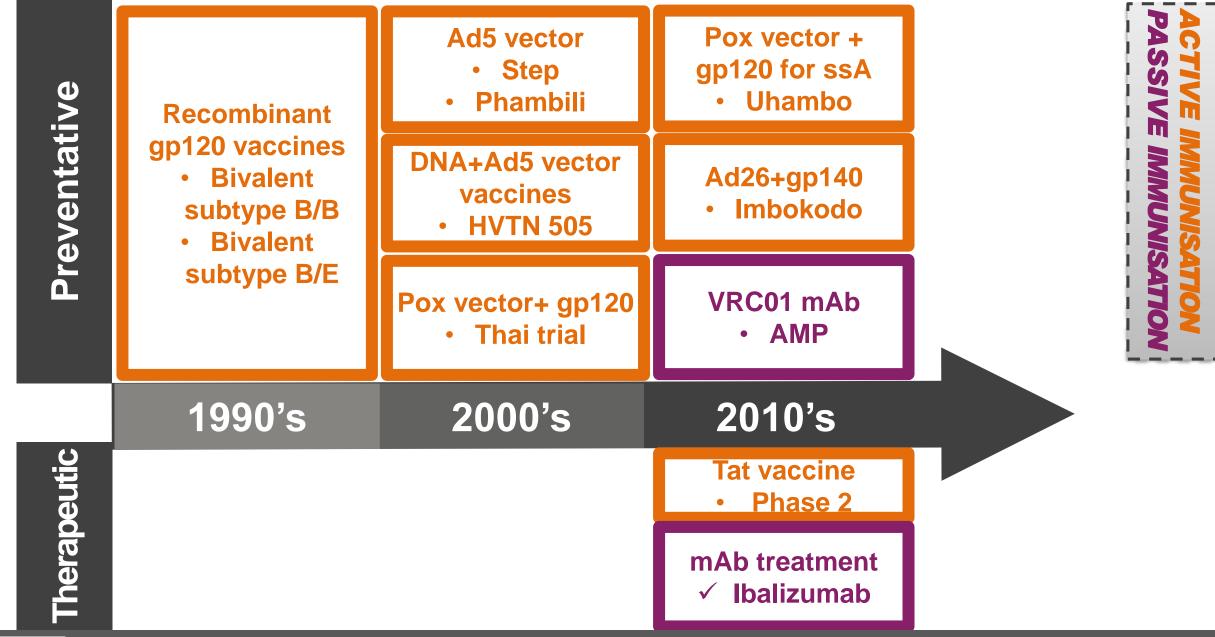


Gray GE, Laher F, Doherty T, et al. Which New Health Technologies Do We Need to Achieve an End to HIV/AIDS? PLoS Biology 2016;14(3):e1002372.

EVEN PARTIALLY EFFICACIOUS HIV VACCINES WITH LIMITED COVERAGE COULD AVERT MILLIONS OF INFECTIONS

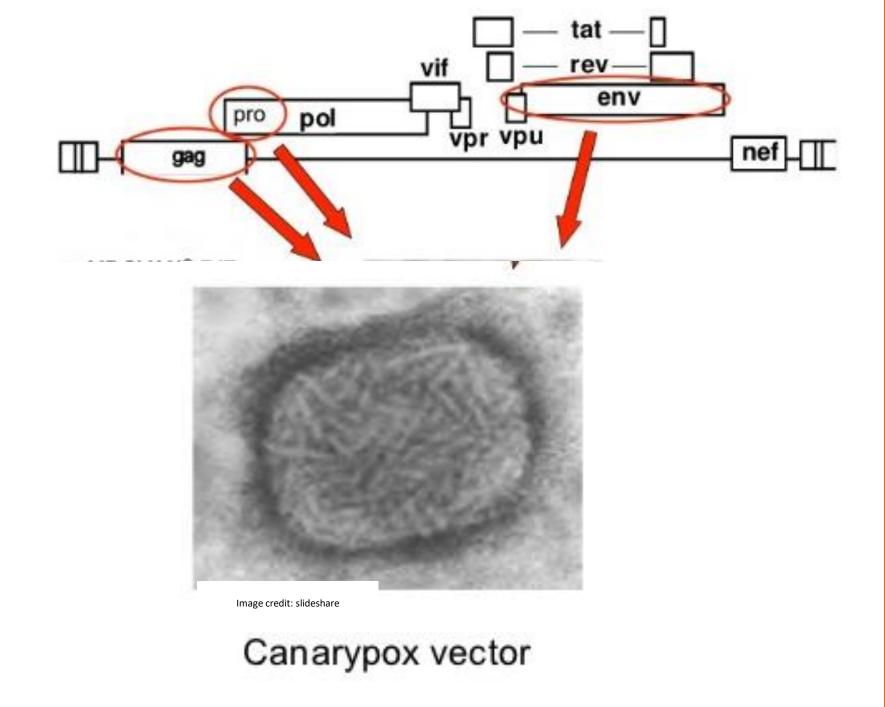

NEW ADULT INFECTIONS IN LOW- AND MIDDLE-INCOME COUNTRIES BY YEAR AND VACCINE SCENARIO

Stover J, et al. The impact of an AIDS Vaccine in Developing Countries: A New Model and Initial Results. Health Affairs 26(4):1147-1158 (2007)


CIRCUMCISION + VACCINES COST-EFFECTIVE

Incremental QALYS over 10 years

Moodley N, Gray G, Bertram M. The Price of Prevention: Cost Effectiveness of Biomedical HIV Prevention Strategies in South Africa. Clin Res HIV AIDS. 2016;3(1).



21 YEARS OF RESEARCH EXCELLENCE Neural INF Dataset UNIVERSITY OF THE WITWATERSRAND.

Updated from: Gray GE, Laher F, Lazarus E, Ensoli B, Corey L. Approaches to preventative and therapeutic HIV vaccines. Curr Opin Virol. April 2016, 17, 104–9.

active *immunisation strategies*

HETEROLOGOUS PRIME BOOST

VECTOR EXPRESSES PROTEINS OF **SELECTED HIV GENE INSERTS**

• USED AS PRIME

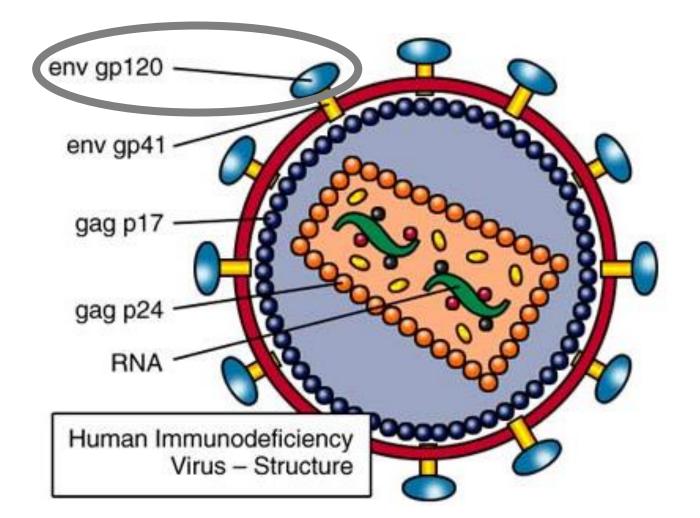


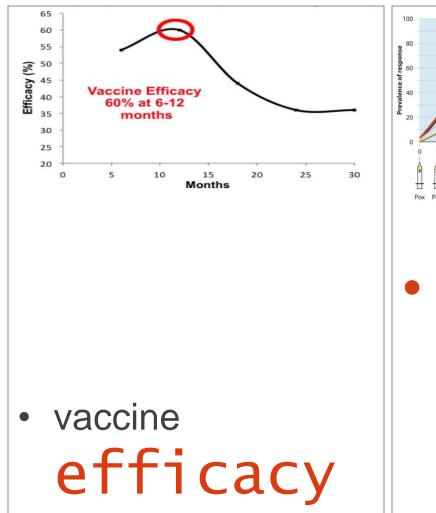
Image credit: <u>http://www.avert.org/hiv-structure-and-life-cycle.htm</u>

PROTEIN

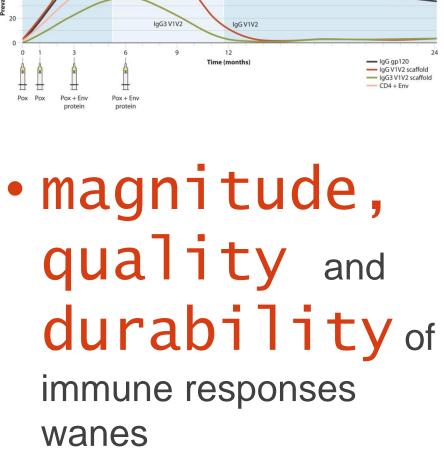
• ENVELOPE PROTEIN

• GIVEN WITH ADJUVANT

• USED AS BOOST



ALVAC-HIV	for subtypes B/E	+	gp120 for s	ubtypes B/E + alı
MO M1	МЗ	M6	M12	M42


RV144: FIRST HINT OF SUCCESS – AND LESSONS

CD4 + Env

IgG gp120

wanes

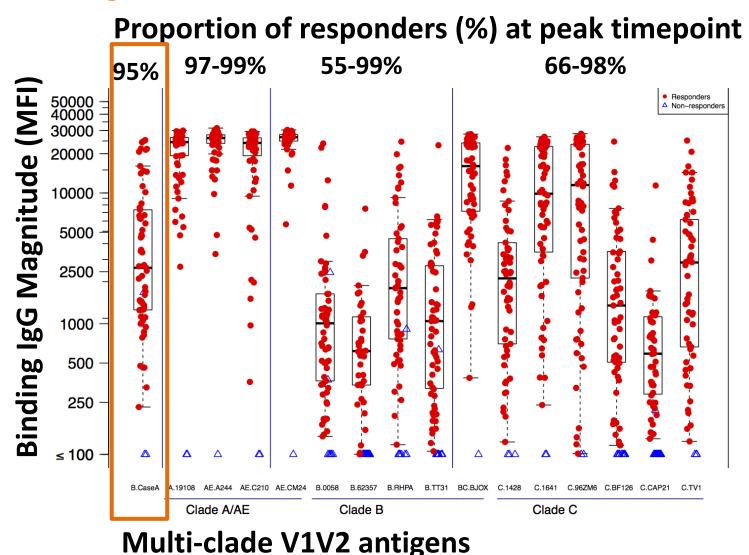
V1V2 loop V3 loop

HIV ENVELOPE SPIKE

Correlates associated with JHIV acquisition:

- Abs (IgG, IgG3) against envelope (vaccinematched gp120, V1V2)
- Functionality,

polyfunctionality scores of env-specific CD4+ Tcell responses

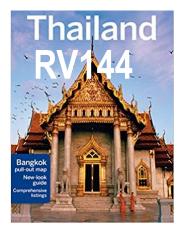


Rerks-Ngarm S. et al. N. Engl. J. Med. 2009; Corey L et al. Science Transl. Med. 2015. Haynes BF et al. Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. NEJM 2012;366(14):1275-86.

HIV VACCINE 11 TRIALS NETWORK 11

HVTN 097: IgG response to V1V2 antigens

V1V2 IgG breadth to Clades B & C lower than to Clade A/AE



Thanks: Georgia Tomaras, HVTN Laboratory, SCHARP, HVTN 097 study team

HIV VACCINE

ALVAC-HIV for subtypes B/E

gp120 for subtypes B/E + alum

MO M1 M3 M6 M12 M42 MO M1 M3 M6 M12 M42

Vaccines can protect against HIV.

- 60% efficacy 31% efficacy
- Scientific principles of protection. Durability a challenge.
- South Africans vaccinated with Thai regimen made immune responses: waned, were not to all subtype C strains

60% efficacy 31% efficacy

gp120 for subtypes B/E + alum **ALVAC-HIV** for subtypes B/E МО M 1 М3 M6 M12 M42

Vaccines can protect against HIV.

MO M1

Scientific principles of protection. Durability a challenge.

M3

- South Africans vaccinated with Thai regimen made immune responses:
 - waned, were not to all subtype C strains

gp120 for subtype C + MF59

M18

M6 M12

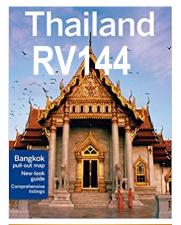
			HVTN 100 SCHEMA	Healthy	
			South African		
Grp	N= 252Month 0, Month 1Month 3, Month 6, Month 12		Month 6,	adults	
VACCINE	210	ALVAC-HIV (vCP2438)	ALVAC-HIV (vCP2438) + Bivalent Subtype C gp120 & MF59®		
PLACEBO	42	Placebo	Placebo + Placebo		

IOHANNESBURG

Bekker LG, Moodie Z, Grunenberg N, Laher F et al. Subtype C ALVAC-HIV and bivalent subtype C gp120/MF59 in HIV-1 vaccine in low-risk, HIV-uninfected, South African adults: a phase 1/2 trial. Lancet HIV 2018.

HVTN 100: IMMUNE RESPONSE DURABILITY

	Month 6,5		Month 12		Month	12,5	Month 18	
	Proportion of vaccine- recipients with response	Magnitude of response (MFI)	Proportio n of vaccine- recipients with response	Magnitude of response (MFI)	Proportion of vaccine- recipients with response	Magnitu de of respons e (MFI)	Proportion of vaccine- recipients with response	Magnitu de of response (MFI)
IgG Abs to gp120 from:								
1086.C strain	99%	29084	100%	9312	98%	31382	98%	24049
TV1.C strain	99%	28113	89%	881	98%	31418	98%	7841
ZM96C strain	96%	26507	2%	948	91%	31379	63%	5329
CD4 T-cells producing IFN- G and/or IL2	62%		36%		70%		57%	



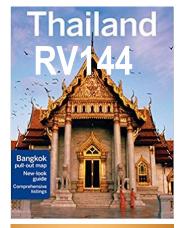
Laher F et al. HVTN 100: the effects of a 12-month booster on immune responses in healthy HIV-uninfected adults vaccinated with ALVAC-HIV (vCP2438) and Bivalent Subtype C gp120/MF59® in South Africa. Late-breaker, IAS 2017.

60% efficacy 31% efficacy

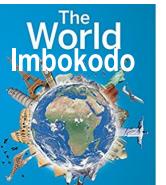
South Africa Uhambo

- Vaccines can protect against HIV.
- Scientific principles of protection. Durability a challenge.
- South Africans vaccinated with Thai regimen made immune responses:
 - waned, were not to all subtype C strains

ALVAC-HIV for subtypes B/C


gp120 for subtype C + MF59

- Good human safety profile
- Phase 1-2a: M12 booster prolongs immune responses to M18
- Phase 2b-3 enrolling



ALVAC-HIV for subtypes B/E - gp120 for subtypes B/E + alum
MO M1 M3 M6 M12 M42
Vaccines can protect against HIV. 60% efficacy 31% efficacy
 Scientific principles of protection. Durability a challenge.
South Africans vaccinated with Thai regimen made immune responses:
waned, were not to all subtype C strains
ALVAC-HIV for subtypes B/C gp120 for subtype C + MF59
MO M1 M3 M6 M12 M18
Good human safety profile
 Phase 1-2a: M12 booster prolongs immune responses to M18
Phase 2b-3 enrolling
Ad26.Mosaic gp140 for subtype C + alum
MO M3 M6 M12
Good human safety profile

Phase 2b enrolling

GLOBAL VACCINE: HIGH LEVEL DEVELOPMENT PLAN

Pre-clinical studies

At 6 weeks after exposure to SHIV, 66% of vaccinated non-human primates (Ad26 prime/Ad+gp140 boost) were HIV-uninfected vs. 0 placebo-recipients

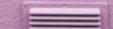
Protection correlated with antibodies to HIV envelope and T-cell responses to vaccines

Phase 1/2a (2014-2016)

Multiple trials, good safety, regimen selected, dose confirmed. Humans made same type & levels of antibodies as non-human primates.

Elicited Env-specific binding antibody responses (100%) @week 52, T-cell responses (83%) at week 50.

Phase 2b (2017-2021)


Phase 3/4

Barouch DH et al. Protective efficacy of a global HIV-1 mosaic vaccine against heterologous SHIV challenges in rhesus monkeys. Cell 2013. Barouch DH et al. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat Med 2010.

passive *immunisation strategies*

• BROADLY NEUTRALISING MONOCLONAL ANTIBODIES

VRC01

- Antibody
- Broadly neutralizing: >90% HIV isolates
- Targets CD4 binding site
 on envelope
- Phase 2b prevention trial enrolling Africa, US, Europe

RAPID GROWTH OF bnAb FIELD

- CD4 binding site: VRC01, 3BNC117, PG04, CH103, VRC07, VRC07-523, VRC13
- gp41 MPER: 2F5, 4E10, 10e8
- gp120/41 trimer: 8ANC195, PGT151, 35022
- V1V2 Glycan: PG9&16, PGT141-145, CH01-04, CAP256-VRC26
- N332 Glycan supersite: PGT121, PGT128, 10-1074

SUMMARY

- Vaccines to prevent people from acquiring HIV are coming
- ✓ Multiple doses may be needed
- May be partially efficacious but would costeffectively reduce new infections at population level

thanks to those leading the journey to an HIV vaccine

CABs
 Protocol
 Teams
 Site staff
 Participants
 Communities
 SA MRC, BMGF,
 HVTN, NIHIDAIDS,
 GSK, Sanofi, Janssen