

Western Cape Government

Health

HIV treatment: Modelling and Scale up What are the numbers telling us

Andrew Boulle

4th Southern African HIV Clinicians Society Conference

Outline

- National HIV population projections and treatment uptake (modelled best estimates)
- Service-based validation of modelling focussed on the Western Cape

% of HIV+ adults at different levels of engagement in HIV care

Thembisa Model 4.1

% of HIV+ adults at different levels of engagement in HIV care

53% drop over 10 years in percentage not on ART

Courtesy: Leigh Johnson Thembisa Model 4.1

50% increase in HIV-infected population over 10 years

Courtesy: Leigh Johnson Thembisa Model 4.1

30% drop over 10 years in absolute numbers not on ART

Courtesy: Leigh Johnson Thembisa Model 4.1

HCT: Original data flow pathway

HCT digitisation PoC: Revised data flow pathway

Courtesy: Nisha Jacob

Forms collected by lab transport service for transfer to lab

Forms received at lab/provincial office for capturing into integrated database

PoCT vs Data Centre HIV Cascade Results for HIV+ (n=11,000, 1200 tested positive)

POCT Cascade

Courtesy: Nisha Jacob, UCT SPHFM Research Day presentation, September 2018

ART Status of patients testing HIV positive in primary care

Courtesy: Nisha Jacob, UCT SPHFM Research Day presentation, September 2018

Triangulating the modelling with real data Western Cape Province

Approach

Causes of death	2009	2010	2011	2012	2013	2014	2015
HIV/AIDS	13.7	13.2	12.4	11.7	11.3	10.5	11.7
Interpersonal violence	7.6	8.3	8.3	9.2	10.3	11.3	10.5
Tuberculosis	10.9	8.6	8.6	7.4	6.8	8	8
Diabetes mellitus	4.3	4.6	4.5	4.3	4.3	5.5	5.9
Ischaemic heart disease	5.3	5.9	6.6	6.7	6.6	5.5	5.7
Cerebrovascular disease	4.6	4.8	5.1	5.2	5.2	4.7	4.7
Trachea/bronchi/lung CA	3.4	3.5	3.8	3.7	4.1	3.9	4.1
Road injuries	4.8	5.1	4.5	4.6	4.3	4.3	4
COPD	3.2	3.2	3.5	3.8	3.9	3.5	3.8
Lower respiratory infections	4.1	4.1	4.8	4.2	4.2	2.7	2.9

Courtesy: Evans/Morden

Broad causes of morbidity (using Years of Life Lost)

Pie chart showing that health conditions requiring sustained support from the health service because of their chronicity (HIV/AIDS and NCDs) are the largest contributors to the burden of disease in the province

Courtesy: Evans/Morden

Impact of ART eligibility guidelines on 24m mortality (natural causes)

CD4 count at first presentation in each era in ART-naïve patients (WC)

Courtesy: Meg Osler, unpublished

Approach

HIV status among people admitted to medical wards in province and selected hospitals

- Meintjes demonstrated that more than half of medical admissions at GF Jooste were HIV-associated in 2013, higher than in 2003.
- HIV-associatedness of medical admissions seems not to have changed from 2013 to 2018, and the majority of those admissions are now in ART-experienced patients
- Using a different methodology based just on routine data, this proportion is as high as 50% in high burden facilities (eg. KDH)

Cryptococcal meningitis updated to 2018

* 2018 half-year data doubled

Courtesy Mariette Smith

Approach

Advanced HIV proxied by CD4 counts < 50 cells/ul

Unique patients with

Year

Osler. Clinical Infectious Diseases, Volume 66

Advanced HIV in 2016, proxied by CD4 < 50 cells/ul

Osler. Clinical Infectious Diseases, Volume 66

Analysis cohorts for HIV-associated TB

Zinyakatira, IWHOD 2018

4. Other e.g. drugs

HIV-associated TB incidence on and off ART

Zinyakatira IWHOD 2018

Zinyakatira, IWHOD 2018

Approach

Retention in care for patients starting ART

Variation in 12m ART retention by subdistrict

Live HIV 90 90 90 Cascade for 01/01/2018

2017 TB case-finding in the Western Cape

Western Cape Province

Total TB cases	56 789	Initiated treatment	43 005 (75.7%)
In TB register*	38 923 (68.5%)	Lab confirmed	29 214 (67.9%)
Lab confirmed	42 959 (75.6%)	Not in register	4 921 (11.4%)
Retreatment cases	17 618 (31.0%)		
Extra-pulmonary TB cases	6 149 (10.8%)		

2017 TB case-finding

56,789

Drug susceptibility	N= 56 789	Ascertainment basis	N= 56 789	Treatment	N= 43 005	Demographics	N= 56 789	Outcomes	N= 38 923*
MDR	1 682 (3.0%)	In register	38 923 (68.5%)	Initiation		Age		With outcome	20 935 (53.8%)
XDR	60 (0.1%)	Lab confirmed	15 737 (27.7%)	first evidence	18 889 (43.9%)	0 to 14	5 533 (9.7%)	Cured	6 468 (16.6%)
RIF	215 (0.4%)	Xpert	21 297 (49.6%)	<7d	16 544 (38.5%)	15 to 24	7 697 (13.6%)	Completed	10 806 (27.8%)
Mono/Poly	457 (0.8%)	Culture	19 862 (46.2%)	<14d	3 049 (7.1%)	25 to 34	15 285 (26.9%)	Died	1 119 (2.9%)
Sensitive	29 870 (52.6%)	LPA	15 (0.0%)	<28d	1 898 (4.4%)	35 to 44	13 090 (23.1%)	On treatment	(0.0%)
Not tested 24 505 (43.2%)	Microscopy	1 785 (4.2%)	>28d	2 625 (6.1%)	45 to 54	9 114 (16.0%)	Failed	111 (0.3%)	
		Drug specimen	1 532 (2.7%)			55 to 64	4 216 (7.4%)	DR	109 (0.3%)
Previous TB episodes	N= 56 789	ICD10 code	147 (0.3%)			> 65	1 839 (3.2%)	Defaulter	2 322 (6.0%)
None	40 752 (71.8%)	TB Hospital admission	450 (0.8%)						
1	10 613 (18.7%)	Other	(0.0%)			Sex		LTF - with visit	16 158 (41.5%)
2	3 561 (6.3%)					Females	24 273 (42.7%)	LTF - no visit	1 830 (4.7%)
3	1 259 (2.2%)					Males	32 363 (57.0%)	_	
>3	604 (1.1%)					HIV status			
Duration between repeat TB episodes	N= 16 037					HIV Positive	23 653 (41.7%)		
<1 yrs	3 762 (23.5%)					Started ART	20 111 (85.0%)		
<2 yrs	3 574 (22.3%)					Pre TB	12 932 (64.3%)		
<3 yrs	2 036 (12.7%)					Post TB	7 179 (35.7%)		
<4 yrs	1 488 (9.3%)								
<5 yrs	1 174 (7.3%)								
>5 yrs	4 003 (25.0%)								

Approach

Summary

In spite of treatment, there is an ongoing or possibly even increasing burden of advanced HIV disease due to

- Doubling of HIV population, with patients deteriorating quickly if stopping treatment
- Poor retention in care of those who do start treatment

Evidenced by ongoing or increasing

- □ HIV mortality
- □ Admission to medical wards that is HIV-associated
- Presentation with low CD4 counts
- □ Cryptococcal meningitis
- □ HIV-associated tuberculosis

□ For each of the above, data clearly show that the majority of affected patients had previously accessed treatment

Approach

Summary

- From a morbidity and mortality perspective, re-engaging those previously started on ART and initiating those known to the service likely the most impactful approach
- 2nd generation routine data systems which are actionable at personlevel should be pursued
- New approaches to long term care focussed on supported selfmanagement – move beyond HIV clubs and CCMDD to patient driven vs. system driven differentiated care.
- □ Identify where in the system the responsibility lies for worrying about the people who are not in care but should be.

- Leigh Johnson
- Nisha Jacob
- Juliet Evans, Erna Morden, Kirsten Bobrow
- □ Mariette Smith, Alexa Heekes
- Meg Osler, Nesbert Zinyakatira
- Lubabalo Mangoloti, Jacqueline Voget, Vanessa Mundaly
 Graeme Meintjes

BILL& MELINDA GATES foundation

