The Challenges of TB Infection Control in Southern Africa

Prashini Moodley

University of KwaZulu-Natal & KZN Department of Health
South Africa
Infectious Disease Cycle of Transmission

- a **reservoir** for the organism
- a susceptible **host**
- **transmission** from one to the other

- each of these is a target where we can prevent infections from occurring

- **transmission of TB**
 - droplet
 - airborne
TB control

• decreasing infectiousness of patients/reservoir
• prevention of transmission
 – infection prevention in health care facilities
 – infection prevention in public transport and buildings
 – infection prevention at home
• prophylaxis for the non-infected/susceptible host
 – vaccination
 – prophylactic medication
TB control

• decreasing infectiousness of patients
 • prevention of transmission
 – infection prevention in health care facilities
 – infection prevention in public transport and buildings
 – infection prevention at home
 • prophylaxis for the non-infected part of the population
 – vaccination
 – prophylactic medication
Infectiousness in relation to bacterial load

- Acquisition of infection
- Time to diagnosis
- Initiation of treatment

[bacilli/ml]

10^3
Infectiousness in relation to bacterial load

- Acquisition of infection
- Initiation of treatment

$[\text{bacilli/ml}]$

1000

Months
• fast tracking of diagnosis
 – turn a patient non-infectious through treatment
 ➢ decrease the number of exposed people
 ➢ decreasing the likelihood of transmission/exposure
XDR in KZN = TDR

<table>
<thead>
<tr>
<th>Drug</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>isoniazid</td>
<td>R</td>
</tr>
<tr>
<td>rifampicin</td>
<td>R</td>
</tr>
<tr>
<td>pyrazinamide</td>
<td>R</td>
</tr>
<tr>
<td>ethambutol</td>
<td>R</td>
</tr>
<tr>
<td>streptomycin</td>
<td>R</td>
</tr>
<tr>
<td>ethionamide</td>
<td>R</td>
</tr>
<tr>
<td>ofloxacin</td>
<td>R</td>
</tr>
<tr>
<td>moxifloxacin</td>
<td>R</td>
</tr>
<tr>
<td>kanamycin</td>
<td>R</td>
</tr>
<tr>
<td>amikacin</td>
<td>R</td>
</tr>
<tr>
<td>capreomycin</td>
<td>R</td>
</tr>
<tr>
<td>PAS</td>
<td>S</td>
</tr>
<tr>
<td>linezolid</td>
<td>S</td>
</tr>
<tr>
<td>meropenem/clavulanic acid</td>
<td>S</td>
</tr>
</tbody>
</table>
TB control

• decreasing infectiousness of patients
• prevention of transmission
 – infection prevention in health care facilities
 – infection prevention in public transport and buildings
 – infection prevention at home
• prophylaxis for the non-infected
 – vaccination
 – prophylactic medication
Prevention of transmission in health care facilities

- **patient management and staff practice**
 - triage and separation
 - cough education
 - fast tracking care and diagnosis

- **infrastructure**
 - ventilation systems
 - negative pressure
 - size of OPD/wards vs patient volumes

- **personal protective equipment**
 - N95 respirators
Infection prevention for tuberculosis

• patient management and staff practice
 – triage and separation
 – cough education
 – fast tracking care and diagnosis

• infrastructure
 – ventilation systems
 – negative pressure
 – size of OPD/wards vs patient volumes

• personal protective equipment
 – N95 respirators
Goals

• separation to protect non-coughing patients

• cough education to protect patients in the coughing group
 – mix of TB infected patients (S, MDR, XDR, TDR)
 – HIV infected and uninfected
Risk assessment in specialised TB facilities in KZN
Challenges with triage

- at which point in the patient flow?
- what to do with (many) coughing patients?

over-crowding in OPD ➔ immediate attendance

separate waiting area ➔ where?
Infection prevention for tuberculosis

- **patient management and staff practice**
 - triage and separation
 - cough education
 - fast tracking care and diagnosis

- **infrastructure**
 - ventilation systems
 - negative pressure
 - size of OPD/wards vs patient volumes

- **personal protective equipment**
 - N95 respirators
Challenges with environmental control

• building structure
 – ventilation systems
 – ceiling height
 – isolation wards
• overcrowding
 – ward
 – OPD
• cough areas/booths
Waiting Areas

• rooms with rapid air changes (6-12/hr) (depending on number of people in waiting areas)
• and negative pressure
 or
• structures with roofs only

What about wards and other areas?

airflow control in all areas with (potential) TB patients
Ventilation systems

• air changes
 → at least 6 changes per hour

• air flow
 – controlled
 – HEPA filtered
 • (Highly Effective Particulate Air filter)
 – UV irradiated
Ventilation systems

• air changes

• air flow
 – controlled
 – HEPA filtered
 – UV irradiated
In most provincial hospitals
Ventilation systems

• Air changes
 - at least 6 changes per hour

• Air flow
 - controlled
 - HEPA filtered
 - UV irradiation
 - recirculation
 - kill of bacteria
 - assist sub-optimal circulation
UV irradiation

Works only with special devices!

Kill

No kill

< 1 m

> 1 min
Negative pressure

regulation of inflow and outflow

outflow > inflow

most infectious patient in room with lowest pressure
An outbreak of multi-drug-resistant tuberculosis in a London teaching hospital

- Breathnach AS et al
MDR TB outbreak in Hospital Ward

- HIV –ve patient with drug susceptible TB
 - developed MDR-TB ? poor adherence to therapy
 - admitted to an isolation room in a ward with HIV-positive patients

- isolation room
 - at positive-pressure relative to the main ward

- MDR TB outbreak
 - 7 HIV-positive contacts developed MDR-TB
 - MTB isolates were indistinguishable by molecular typing
Prevention of transmission in health care facilities

- patient management and staff practice
 - triage and separation
 - cough education
 - fast tracking care and diagnosis
- infrastructure
 - ventilation systems
 - negative pressure
 - size of OPD/wards vs patient volumes
- personal protective equipment
 - N95 respirators
Reasons for failing of the filter

- Filter saturation
- Face-seal leaks
- Damage
- Manufacturing defects

Prevented by restricted period of use

Detected by fit testing

Depends on the contamination level of the air you breath
Challenges with personal protection

- **adherence**
 - unpleasant for user
 - unfriendly for patients

- **confusing information**
 - when to discard?

- **fit-testing**
 - consistency in donning the mask
 - procurement system
TB control = prevention of transmission

• decreasing infectiousness of patients

• prevention of transmission
 – infection prevention in health care facilities
 – infection prevention in public transport and buildings
 – infection prevention at home

• prophylaxis for the non-infected part of the population
 – vaccination
 – prophylactic medication
Infection prevention outside health care facilities

• community education
 – household education/counseling
 – targeted group education

 – How ???
Can social interventions prevent tuberculosis?: the Papworth experiment (1918-1943) revisited.

- Bhargava A et al.
• **rationale**

 – consensus on the need to address social determinants of tuberculosis for TB control

 – evidence based on interventions is lacking

• **objectives**

 – reanalyzed data from the sociomedical experiment performed at the Papworth Village Settlement in England

 – impact of stable employment and adequate housing and nutrition on the incidence of TB infection and disease in children living with parents with active TB was documented during 1918-1943
• social interventions including adequate nutrition
 – did not reduce TB transmission
 – did reduce the incidence of TB disease in children living with parents with active TB
 – the susceptible host

• results relevant today
 – prevention of TB in children of patients with active TB in our high-burden setting
Tuberculosis transmission to young children in a South African community: modelling household and community infection risks

• Clin Infect Dis. 2010 Aug 15;51(4):401-8

• Wood R et al
Conclusions

• annual risk in preschool children
 – greatest if infectious residents in the home
 – substantial proportion of transmissions may occur from non resident adults

• benefits of increased ventilation
 – maximized when the period of infectivity is reduced
 – (prompt treatment reservoir/infected case)
Indoor Social Networks in a South African Township: Potential Contribution of Location to Tuberculosis Transmission

- Wood R et al
Conclusions

• increasing numbers of social contacts occurred throughout
 – childhood, adolescence, and young adulthood
 – predominantly in school and public transport

• rapid increase in non-home socialization
 – parallels the increasing TB infection rates during childhood and young adulthood

• further studies of the environmental conditions
 – schools and public transport indicated
TB control = prevention of transmission

- decreasing infectiousness of patients
- prevention of transmission
 - infection prevention in health care facilities
 - infection prevention in public transport and buildings
 - infection prevention at home
- prophylaxis for the non-infected part of the population
 - vaccination (new vaccines – many years before 1st one could be available)
 - antimicrobial prophylaxis
Back to basics

- A reservoir for the organism
- A susceptible host
- Transmission from one to the other

- each of these is a target where we can prevent infections from occurring
Back to basics

• The current epidemic in KZN is the result of:
 – a high density of TB transmitters in the population (massive reservoir)
 – a high density of highly TB susceptible host individuals in the population (the HIV infected)
 – ongoing transmission
Back to basics

- We need to address each of these
 - Active, early case finding (reservoir)
 - Before patients become infectious
 - Before a productive cough develops
 - Decreasing host susceptibility
 - Early ARV treatment
 - Socio economic factors – nutrition
 - ? prophylaxis
 - Vaccines
 - Transmission
 - Effective barrier between infected and non-infected
 - Difficult to achieve