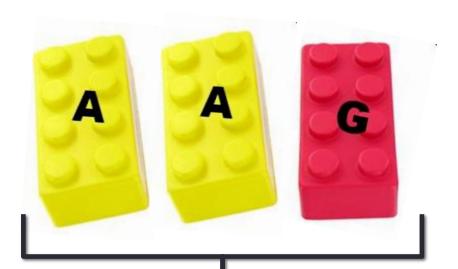
BASICS TO UNDERSTAND HIV DRUG RESISTANCE

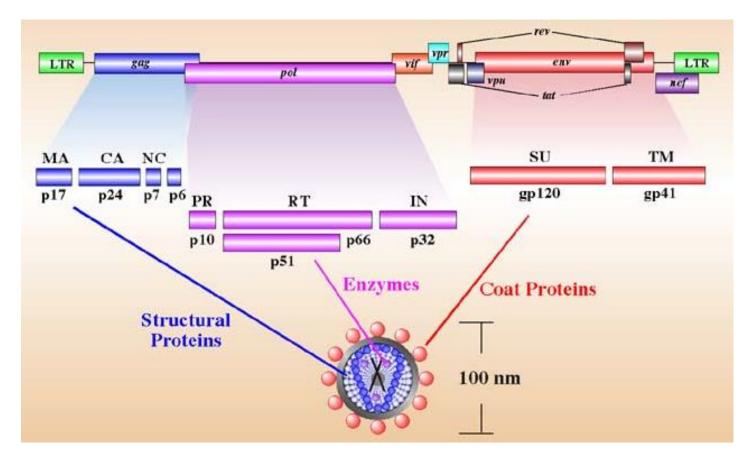
Dr Carole Wallis, PhD Medical Director, BARC-SA Head of the Specialty Molecular Division, Lancet Laboratories, South Africa

What makes up the HIV virus

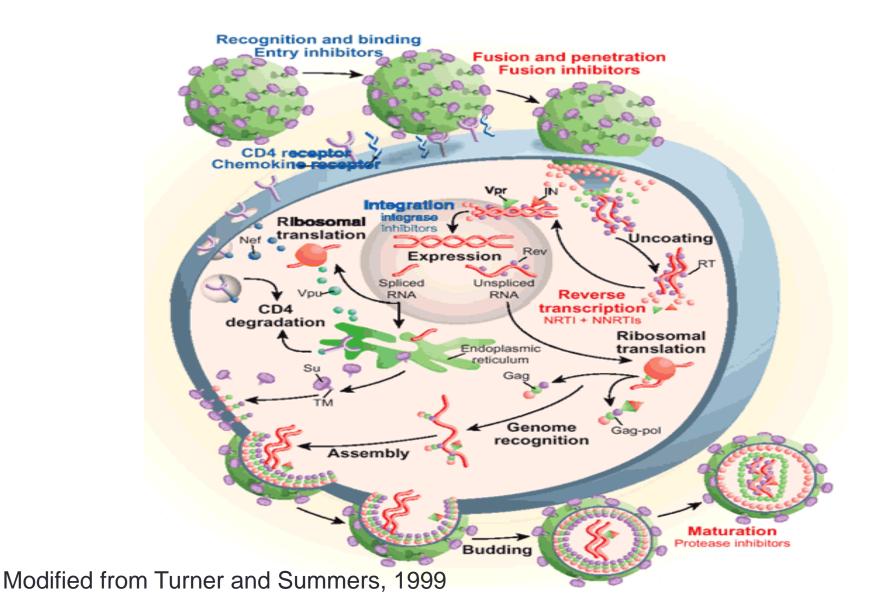

 HIV genome is made up of building blocks known as amino acids, each amino acid consists of three nucleotides.

Amino Acids

 Different Combinations of the nucleotides make up different amino acids



Serine (S) Lysine (K)


HIV Genome

Amino Acids make up the HIV genes

http://www.stanford.edu/group/virus/retro/2005gongishmail/HIV-1b.jpg

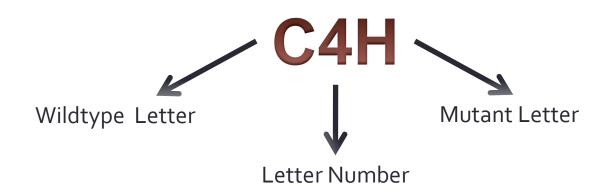
HIV Life Cycle & Drug Targets

How do mutations arise in the HIV genome

- When the HIV replicates it makes mistakes.
- Why does the virus make mistakes:
 - It doesn't check what it is doing (high error rate of the reverse transcriptase [RT] enzyme);
 - Replicates very fast (high HIV replication rate).
- Mistake=Mutation

Example of what a mutation does

THE CAT SAT ON THE MAT


THE HAT SAT ON THE MAT

It changes the sentence (gene) so it still makes sense; but says something different.

Naming a Mutation

THE CAT SAT ON THE MAT

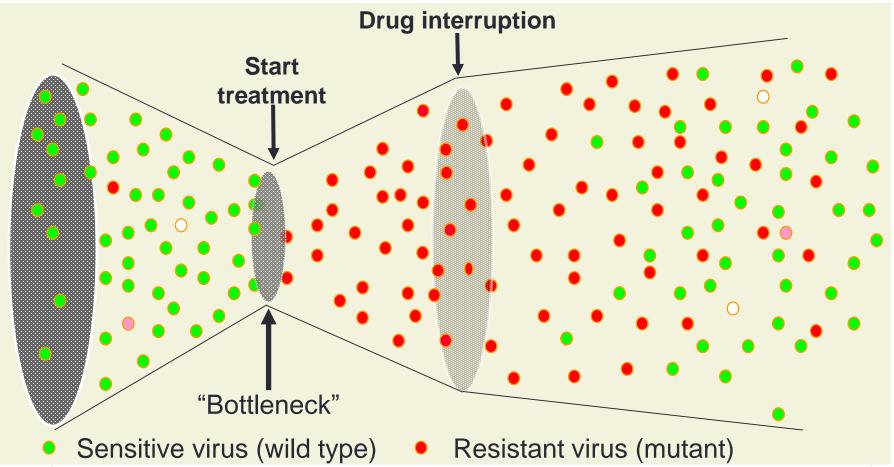
THE HAT SAT ON THE MAT

Naming of an HIV Mutation

The length of the gene:

- Protease Region of Polymerase Gene is from Amino Acid 1 to Amino Acid 99
- Reverse Transcriptase Region of Polymerase Gene is from Amino Acid 1 to Amino Acid 540
- Anywhere along these amino acids you can get a change in the sentence and a mutation.

Mixture


M184M/V

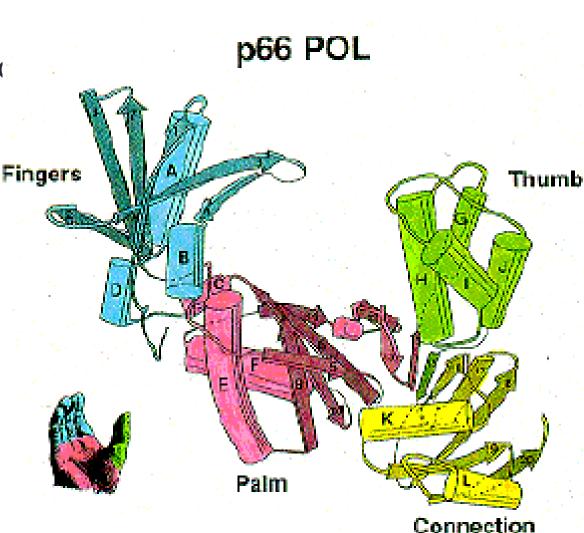
- Means there is both wild-type and mutant viruses present
- Treat as if it were a mutation.

Viral dynamics and resistance

What happens when the virus makes changes to its genes that the antiretroviral are targeting?

- The antiretroviral no longer 'understands' the sentence
- This allows the HIV virus to grow
- So you see an increase in HIV Viral Load

More about mutations...


- Mutation can be specific to one ARV.
- Mutation can be specific to several ARVs (crossresistance).
- Strength of resistance of a mutation can be different
 - Some mutations can be weak;
 - Some mutations can be very strong.
- How easy to get resistance
 - Often dependent on the ARV;
 - One mutation to give resistance (low genetic barrier drugs);
 - Lots of mutations to give resistance (high genetic barrier drugs);
 - Resistance can get worse overtime because mutations keep accumulating.

Reverse Transcriptase

- HIV Enzyme
- Transcribes single stranded viral RNA into viral cDNA in the cytoplasm.
- The RT crystal structure looks like a right hand → fingers, palm and thumb.

Reverse Transcriptase cont...

- The thumb and the fingers hold the nucleic acid in place over the palm.
- Palm is the active site of the enzyme.

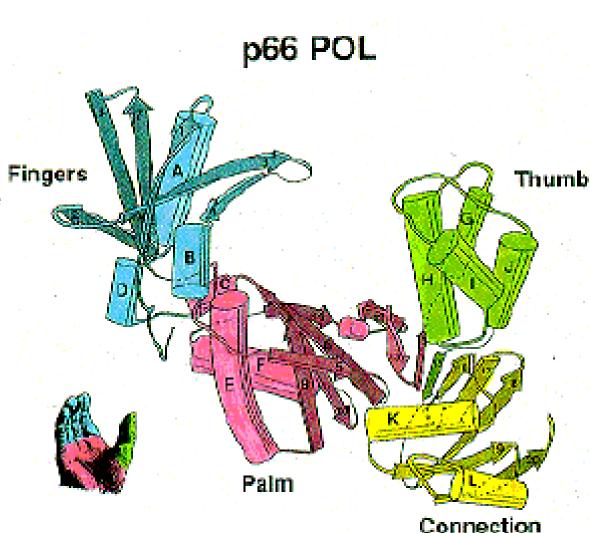
Mutations that give resistance to NRTIs

How do NRTIs work?

- To replicate HIV uses nucleotides to make copies of itself.
- NRTIs are nucleoside analogues → "artificial nucleotides" modified to cause chain termination/stop replication.
- During replication NRTIs competitively inhibit RT activity.
- When the virus is replicating it inserts an "artificial nucleotide" rather than a naturally occurring nucleotide, results in replication stopping.
- During ARV drug pressure the HIV-1 RT is able to develop resistance to these drugs by generating mutations.

Mechanism 1 NRTI Resistance

- RT-residues that encode amino acids on the tips of the fingers that come into direct contact with the dNTPs or NRTIs can mutate.
- These mutations affect the rate of binding and incorporation of nucleotides.
- Primary mutations are amino acid substitutions in critical positions of the enzyme that cause an immediate decrease in susceptibility to the drug, ultimately leading to virological failure.
- K65R, L74V, Y115F, M184V/I and Q151M and its associated mutations.

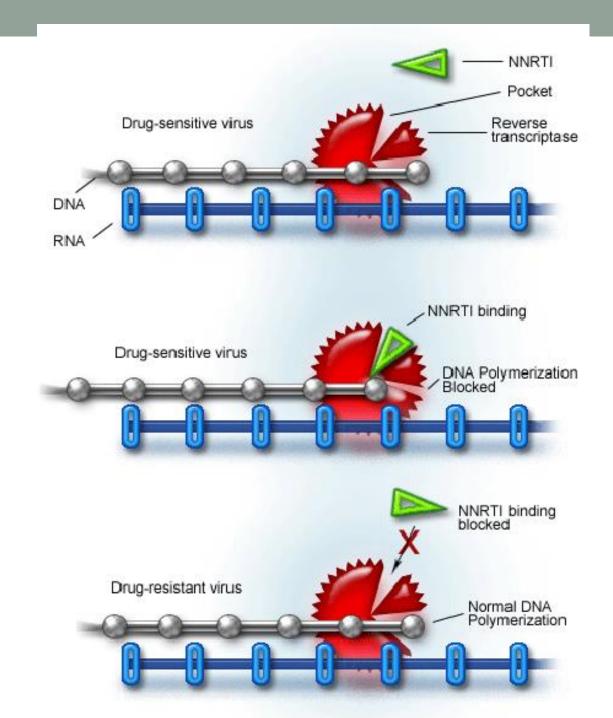

Mechanism 2 NRTI Resistance

- Increased rate of excision of the NRTIs.
- This process is driven by adenosine triphosphate (ATP) and is caused by thymidine analogue mutations (TAMs) that occur close to the triphosphate binding site.
- As the number of TAMs such as M41L, D67N, K70E, L210W, T215Y/F, K219Q/E/N/K increase in the RT, the level of resistance increases.

Mutations that give resistance to NNRTIS

Reverse Transcriptase

- Thumb and Fingers linked to NRTI resistance
- Palm is the active site of the enzyme and a hydrophobic pocketlinked to NNRTI resistance.

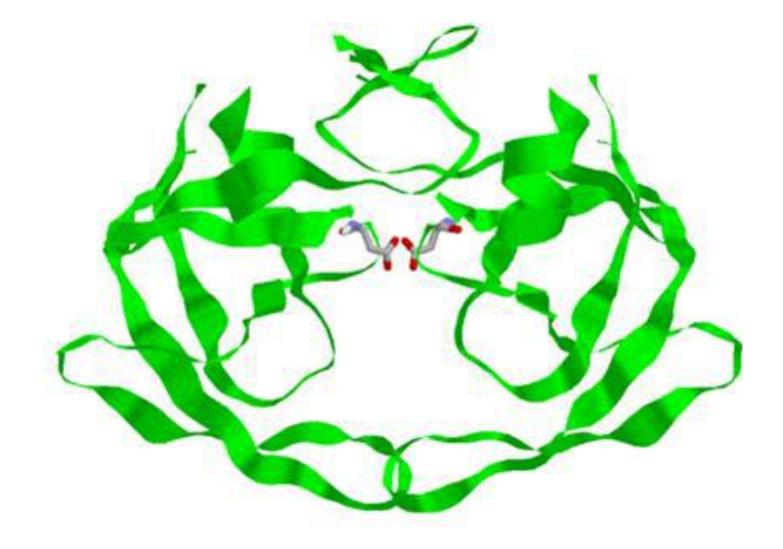


How do NNRTIs work?

- The NNRTIs are molecules which have a high affinity for the hydrophobic pocket of the RT enzyme.
- This results in the NNRTIs binding irreversibly to the pocket (palm of the RT).
- When they bind to the palm this inhibits replication of HIV.

Mechanism of NNRTI resistance

- Resistance to EFV and NVP develops when mutations occur in the hydrophobic pocket.
- These changes, change the charge of the palm.
- This decreases the ability of the NNRTIs to bind.
- The mutations that develop in the hydrophobic pocket result in cross-resistance to all firstgeneration NNRTIs (EFV and NVP).



How do second-generation NNRTIs work?

- Etravirine (ETR):
 - A highly flexible molecule resulting in a high genetic barrier to resistance.
 - ETR is susceptible to viruses with the K103N mutation, which results in cross resistance to both EFV and NVP.
 - The level of susceptibility is determined using a weighted scoring system for each mutation.

Mutations that give resistance to PIS

Protease is like a bowl with a lid

How do PIs work?

- PIs are a powerful class of drugs which bind more tightly to the active site of the PR enzyme than the natural substrates (polyproteins) and act as preferred substrates.
- Polyproteins and PIs are competitive.
- When the PI binds protease is unable to cleave polyproteins.
- Reduction of mature HIV virions that are produced.

Mechanism of PI resistance

- Mutations occur in the active site or the flap (glycine tips).
- Mutations prohibit the binding of the PIs.
- PIs have a high genetic barrier for resistance, and require an accumulation of major mutations to lose complete susceptibility to the PIs.

More about PI resistance...

- Some mutations make big change to the protease enzyme → Major Mutation.
- Some mutations make small change to the protease enzyme → Minor Mutation.
- Depending on the protease inhibitor and because you add ritonavir you need MORE than one Major Mutation to give you HIGH resistance.

Mutations that give resistance to Integrase Inhibitors

Integrase

- Integrates HIV into host DNA so it can be replicated.
 - HIV cDNA integrase cuts ends→ moves into nucleus → cuts host DNA → integrate the HIV cDNA

Raltegravir and Dolutegravir

- Inhibit the integrase enzyme from performing strand transfer by binding to the active site of integrase.
- Results in no integration of HIV cDNA into the host DNA.
- Therefore no replication of HIV.

Integrase Inhibitor Resistance

Major Integrase Inhibitor (INSTI) Resistance Mutations

	66	92	118	138	140	143	147	148	155	263
Consensus	т	E	G	E	G	Y	S	Q	Ν	R
Bictegravir (BIC)	K	Q	R	KAT	SAC			HRK	Н	K
Dolutegravir (DTG)	K	Q	R	KAT	SAC			HRK	Н	K
Elvitegravir (EVG)	AIK	Q	R	KAT	SAC		G	HRK	Н	К
Raltegravir (RAL)	AI <mark>K</mark>	Q	R	KAT	SAC	RCH		HRK	Н	K

- Changes are at the active site of the integrase enzyme.
- Dolutegravir resistance is rare;
- Most mutations that arise to reduce the susceptibility to dolutegravir; result in a non-viable virus; however, if mutations are already present in integrase when DTG is initiated this can compromise treatment outcome.
- Integrase resistance testing needs to be ordered as a separate test.

Summary

- Mutations to an antiretroviral develop in the target gene.
- Mutations can give resistance to other drugs in the same class.
- Longer a patient is on a failing regimen the more mutations will develop and the more resistance the patient will have.